Heating long pipes

被引:0
|
作者
Dimitrios Betsakos
Alexander Yu. Solynin
机构
[1] Aristotle University of Thessaloniki,Department of Mathematics
[2] Texas Tech University,Department of Mathematics and Statistics
来源
关键词
Heat distribution; Harmonic measure; Cylindrical pipe; 31B20; 35J05; 35B07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the steady-state distribution of heat on long pipes in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document} heated along some regions of their surfaces. In particular, we prove that, if the pipe P={(x,y,z):x2+y2<1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P=\{(x,y,z):\,x^2+y^2<1\}$$\end{document} is heated along its surface belt B(a)={(x,y,z):x2+y2=1,-a<z<a}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B(a)=\{(x,y,z):\,x^2+y^2=1,-a<z<a\}$$\end{document}, a>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a>0$$\end{document}, then the temperature in its cross-sections Dc={(x,y,z)∈P:z=c}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_c=\{(x,y,z)\in P:\, z=c\}$$\end{document} is increasing in the radial direction for all c in the interval [-a,a]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[-a, a]$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Reserves in axial shear strength of district heating pipes
    Weidlich, Ingo
    Illguth, Marcus
    Banushi, Gersena
    INTERNATIONAL SCIENTIFIC CONFERENCE ENVIRONMENTAL AND CLIMATE TECHNOLOGIES, CONECT 2018, 2018, 147 : 78 - 85
  • [42] JOINTING POLYTHENE PIPES .1. HEATING WITH LIQUIDS
    BROWN, BM
    NEW ZEALAND JOURNAL OF AGRICULTURE, 1979, 138 (02): : 39 - 39
  • [43] Objectives of improvement in durability of metal of the heating system pipes
    Basin, A.S.
    Chapaev, D.B.
    Koren'kov, A.I.
    Tolstoukhov, V.I.
    Izvestiya Ferrous Metallurgy, 2001, (06): : 41 - 43
  • [44] TREATMENT OF WELDED PIPES USING INDUCTION-HEATING
    ZIMIN, NV
    AKIMOV, IK
    CHELYSHEV, VV
    METAL SCIENCE AND HEAT TREATMENT, 1987, 29 (7-8) : 583 - 587
  • [45] Welding of nozzles and drilling into district heating pipes in operation
    Wittorf, Jan
    Euroheat and Power/Fernwarme International, 2024, 53 (1-2): : 58 - 63
  • [46] OXIDATION OF PIPES DURING FLAME-INDUCTION HEATING
    ZGURA, AA
    NIKOLSKAYA, OT
    IVANOVA, TV
    STEFANSKII, IS
    METAL SCIENCE AND HEAT TREATMENT, 1992, 34 (7-8) : 437 - 440
  • [47] HEATING OF STAINLESS-STEEL PIPES IN DISSOCIATED AMMONIA
    VILYAMS, OS
    BOLSHOVA, NM
    OLEINIK, OV
    METAL SCIENCE AND HEAT TREATMENT, 1976, 18 (9-10) : 900 - 902
  • [48] WELDING OF PIPES MADE OF VINYL PLASTICS BY RESISTANCE HEATING
    KUZNETSOV, FF
    WELDING PRODUCTION, 1974, 21 (11): : 69 - 71
  • [49] HEAT TRANSMISSION AT GILLED PIPES AND MEMBRANE HEATING SURFACES
    RUP, K
    TALER, J
    BRENNSTOFF-WARME-KRAFT, 1989, 41 (03): : 90 - 95
  • [50] GAS POWDER SURFACING ON HEATING SURFACE PIPES.
    Sheskterkin, N.G.
    Arutyunova, I.F.
    Men'shikov, Yu.A.
    Zakhvatoshin, Yu.V.
    Kozyrev, V.F.
    Starchak, A.S.
    Nikiforov, A.I.
    1600,