Monotonicity of solutions for some nonlocal elliptic problems in half-spaces

被引:0
|
作者
B. Barrios
L. Del Pezzo
J. García-Melián
A. Quaas
机构
[1] Universidad de La Laguna,Departamento de Análisis Matemático
[2] CONICET,Departamento de Matemática FCEyN, UBA
[3] Universidad de La Laguna,Instituto Universitario de Estudios Avanzados (IUdEA) en Física Atómica, Molecular y Fotónica
[4] Universidad Técnica Federico Santa María,Departamento de Matemática
关键词
45M20; 47G10; 35S15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider classical solutions u of the semilinear fractional problem (-Δ)su=f(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^s u = f(u)$$\end{document} in R+N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N_+$$\end{document} with u=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=0$$\end{document} in RN\R+N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N {\setminus } {\mathbb {R}}^N_+$$\end{document}, where (-Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^s$$\end{document}, 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document}, stands for the fractional laplacian, N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}, R+N={x=(x′,xN)∈RN:xN>0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N_+=\{x=(x',x_N)\in {\mathbb {R}}^N{:}\ x_N>0\}$$\end{document} is the half-space and f∈C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in C^1$$\end{document} is a given function. With no additional restriction on the function f, we show that bounded, nonnegative, nontrivial classical solutions are indeed positive in R+N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N_+$$\end{document} and verify ∂u∂xN>0inR+N.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{\partial u}{\partial x_N}>0 \quad \hbox {in } {\mathbb {R}}^N_+. \end{aligned}$$\end{document}This is in contrast with previously known results for the local case s=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=1$$\end{document}, where nonnegative solutions which are not positive do exist and the monotonicity property above is not known to hold in general even for positive solutions when f(0)<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(0)<0$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] ELLIPTIC DIFFERENTIAL-DIFFERENCE PROBLEMS IN HALF-SPACES: CASE OF SUMMABLE FUNCTIONS
    Muravnik, A. B.
    UFA MATHEMATICAL JOURNAL, 2023, 15 (03): : 97 - 105
  • [22] Monotonicity in half-spaces of positive solutions to -Δpu = f(u) in the case p &gt; 2
    Farina, Alberto
    Montoro, Luigi
    Sciunzi, Berardino
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2017, 17 (04) : 1207 - 1229
  • [23] Some Hardy identities on half-spaces
    Duy, Nguyen Tuan
    Lam, Nguyen
    Phi, Le Long
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (12) : 2317 - 2328
  • [24] Liouville theorems for nonlinear elliptic equations in half-spaces
    Jorge García-Melián
    Alexander Quaas
    Boyan Sirakov
    Journal d'Analyse Mathématique, 2019, 139 : 559 - 583
  • [25] Liouville theorems for nonlinear elliptic equations in half-spaces
    Garcia-Melian, Jorge
    Quaas, Alexander
    Sirakov, Boyan
    JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (02): : 559 - 583
  • [26] Elliptic Equations with Arbitrarily Directed Translations in Half-Spaces
    Liiko, Viktoriia V.
    Muravnik, Andrey B.
    BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2023, 43 : 64 - 77
  • [27] Monotonicity and nonexistence results for some fractional elliptic problems in the half-space
    Fall, Mouhamed Moustapha
    Weth, Tobias
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (01)
  • [28] MONOTONICITY OF THE SOLUTIONS OF SOME QUASILINEAR ELLIPTIC EQUATIONS IN THE HALF-PLANE, AND APPLICATIONS
    Damascelli, Lucio
    Sciunzi, Berardino
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2010, 23 (5-6) : 419 - 434
  • [29] On one property of solutions of problems of the theory of elasticity for two half-planes or half-spaces
    Ostryk V.I.
    Ulitko A.F.
    Journal of Mathematical Sciences, 2010, 170 (5) : 649 - 658
  • [30] A priori bounds and existence of solutions for some nonlocal elliptic problems
    Barrios, Begona
    Del Pezzo, Leandro
    Garcia-Melian, Jorge
    Quaas, Alexander
    REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (01) : 195 - 220