Monotonicity of solutions for some nonlocal elliptic problems in half-spaces

被引:0
|
作者
B. Barrios
L. Del Pezzo
J. García-Melián
A. Quaas
机构
[1] Universidad de La Laguna,Departamento de Análisis Matemático
[2] CONICET,Departamento de Matemática FCEyN, UBA
[3] Universidad de La Laguna,Instituto Universitario de Estudios Avanzados (IUdEA) en Física Atómica, Molecular y Fotónica
[4] Universidad Técnica Federico Santa María,Departamento de Matemática
关键词
45M20; 47G10; 35S15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider classical solutions u of the semilinear fractional problem (-Δ)su=f(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^s u = f(u)$$\end{document} in R+N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N_+$$\end{document} with u=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=0$$\end{document} in RN\R+N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N {\setminus } {\mathbb {R}}^N_+$$\end{document}, where (-Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^s$$\end{document}, 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document}, stands for the fractional laplacian, N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}, R+N={x=(x′,xN)∈RN:xN>0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N_+=\{x=(x',x_N)\in {\mathbb {R}}^N{:}\ x_N>0\}$$\end{document} is the half-space and f∈C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in C^1$$\end{document} is a given function. With no additional restriction on the function f, we show that bounded, nonnegative, nontrivial classical solutions are indeed positive in R+N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N_+$$\end{document} and verify ∂u∂xN>0inR+N.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{\partial u}{\partial x_N}>0 \quad \hbox {in } {\mathbb {R}}^N_+. \end{aligned}$$\end{document}This is in contrast with previously known results for the local case s=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=1$$\end{document}, where nonnegative solutions which are not positive do exist and the monotonicity property above is not known to hold in general even for positive solutions when f(0)<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(0)<0$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Monotonicity of solutions for some nonlocal elliptic problems in half-spaces
    Barrios, B.
    Del Pezzo, L.
    Garcia-Melian, J.
    Quaas, A.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (02)
  • [2] ON MONOTONICITY OF SOLUTIONS OF DIRICHLET PROBLEM FOR SOME QUASILINEAR ELLIPTIC EQUATIONS IN HALF-SPACES
    Salieva, O. A.
    EURASIAN MATHEMATICAL JOURNAL, 2015, 6 (04): : 59 - 76
  • [3] Monotonicity of solutions of quasilinear degenerate elliptic equation in half-spaces
    Farina, Alberto
    Montoro, Luigi
    Sciunzi, Berardino
    MATHEMATISCHE ANNALEN, 2013, 357 (03) : 855 - 893
  • [4] Monotonicity of solutions of quasilinear degenerate elliptic equation in half-spaces
    Alberto Farina
    Luigi Montoro
    Berardino Sciunzi
    Mathematische Annalen, 2013, 357 : 855 - 893
  • [5] Some results about semilinear elliptic problems on half-spaces
    Farina, Alberto
    MATHEMATICS IN ENGINEERING, 2020, 2 (04): : 709 - 721
  • [6] MONOTONICITY AND SYMMETRY OF POSITIVE SOLUTIONS TO DEGENERATE QUASILINEAR ELLIPTIC SYSTEMS IN HALF-SPACES AND STRIPS
    Phuong Le
    Hoang-Hung Vo
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (03) : 1027 - 1048
  • [7] Monotonicity of solutions to quasilinear problems with a first-order term in half-spaces
    Farina, Alberto
    Montoro, Luigi
    Riey, Giuseppe
    Sciunzi, Berardino
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (01): : 1 - 22
  • [8] A NOTE ON THE MONOTONICITY OF SOLUTIONS FOR FRACTIONAL EQUATIONS IN HALF-SPACES
    Barrios, B.
    Garcia-Melian, J.
    Quaas, A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (07) : 3011 - 3019
  • [9] Monotonicity of positive solutions to quasilinear elliptic equations in half-spaces with a changing-sign nonlinearity
    Francesco Esposito
    Alberto Farina
    Luigi Montoro
    Berardino Sciunzi
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [10] Monotonicity of positive solutions to quasilinear elliptic equations in half-spaces with a changing-sign nonlinearity
    Esposito, Francesco
    Farina, Alberto
    Montoro, Luigi
    Sciunzi, Berardino
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (04)