Smartphone based human activity monitoring and recognition using ML and DL: a comprehensive survey

被引:0
|
作者
Dipanwita Thakur
Suparna Biswas
机构
[1] Banasthali Vidyapith,
[2] Maulana Abul Kalam Azad University of Technology,undefined
关键词
Human activity monitoring and recognition; Healthcare; Machine learning; Smartphone; Sensors;
D O I
暂无
中图分类号
学科分类号
摘要
Human activity monitoring and recognition (HAMR) based on smartphone sensor data is a field that promotes a lot of observation in current era due to its notable desire in various Ambient Intelligent applications such as healthcare, sports, surveillance, and remote health monitoring. In this context, many research works have unveiled incredible results using various smartphone sensors such as accelerometer, gyroscope, magnetometer, digital compass, microphone, GPS and camera. The waveform of sensor motion is quite different in several smartphone placements even for the identical activity. This makes it challenging to apprehend varied completely different activities with high precision. Due to the difference in behavioral habits, gender and age, the movement patterns of various individuals vary greatly, which boosts the problem of dividing boundaries of various activities. In HAMR, the main computational tasks are quantitative analysis of human motion and its automatic classification. These cause the inception of Machine Learning (ML) and Deep Learning (DL) techniques to automatically recognize various human activity signals collected using smartphone sensors. This paper presents a comprehensive survey of smartphone sensor based human activity monitoring and recognition using various ML and DL techniques to address the above mentioned challenges. This study unveils the “research gaps in the field of HAMR, to provide the future research directions in HAMR.
引用
收藏
页码:5433 / 5444
页数:11
相关论文
共 50 条
  • [31] Human Activity Recognition and Monitoring Using Smartphones
    Vu Ngoc Thanh Sang
    Nguyen Duc Thang
    Vo Van Toi
    Nguyen Duc Hoang
    Truong Quang Dang Khoa
    5TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING IN VIETNAM, 2015, 46 : 481 - 485
  • [32] CFSCare: ML-based Activity Monitoring System for Chronic Fatigue Syndrome Patients Using Smartphone and Wrist Sensor
    Mahmood, Arafat
    Sridevi, Parama
    Rabbani, Masud
    Meikandan, Padmapriya Velupillai
    Syam, Mohammad
    Shefa, Syeda
    Chu, William
    Ahmed, Sheikh Iqbal
    2024 IEEE 48TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC 2024, 2024, : 827 - 832
  • [33] Smartphone-Based Patients’ Activity Recognition by Using a Self-Learning Scheme for Medical Monitoring
    Junqi Guo
    Xi Zhou
    Yunchuan Sun
    Gong Ping
    Guoxing Zhao
    Zhuorong Li
    Journal of Medical Systems, 2016, 40
  • [34] Smartphone-Based Patients' Activity Recognition by Using a Self-Learning Scheme for Medical Monitoring
    Guo, Junqi
    Zhou, Xi
    Sun, Yunchuan
    Ping, Gong
    Zhao, Guoxing
    Li, Zhuorong
    JOURNAL OF MEDICAL SYSTEMS, 2016, 40 (06)
  • [35] Smartphone-sensors Based Activity Recognition Using IndRNN
    Li, Shuai
    Li, Chuankun
    Li, Wanqing
    Hou, Yonghong
    Cook, Chris
    PROCEEDINGS OF THE 2018 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2018 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS (UBICOMP/ISWC'18 ADJUNCT), 2018, : 1541 - 1547
  • [36] Healthy: A Diary System Based on Activity Recognition Using Smartphone
    Zhao, Kunlun
    Du, Junzhao
    Li, Congqi
    Zhang, Chunlong
    Liu, Hui
    Xu, Chi
    2013 IEEE 10TH INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SENSOR SYSTEMS (MASS 2013), 2013, : 290 - 294
  • [37] Smartphone-based human activity recognition using lightweight multiheaded temporal convolutional network
    Sekaran, Sarmela Raja
    Han, Pang Ying
    Yin, Ooi Shih
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 227
  • [38] Robust smartphone-based human activity recognition using a tri-axial accelerometer
    Torres-Huitzil, Cesar
    Nuno-Maganda, Marco
    2015 IEEE 6TH LATIN AMERICAN SYMPOSIUM ON CIRCUITS & SYSTEMS (LASCAS), 2015,
  • [39] Logistic Model Tree for Human Activity Recognition Using Smartphone-Based Inertial Sensors
    Nematallah, H.
    Rajan, S.
    Cretu, A. -M.
    2019 IEEE SENSORS, 2019,
  • [40] Smartphone based human activity recognition irrespective of usage behavior using deep learning technique
    Soumya Kundu
    Manjarini Mallik
    Jayita Saha
    Chandreyee Chowdhury
    International Journal of Information Technology, 2025, 17 (1) : 69 - 85