Oxygen isotope anomaly in tropospheric CO2 and implications for CO2 residence time in the atmosphere and gross primary productivity

被引:0
|
作者
Mao-Chang Liang
Sasadhar Mahata
Amzad H. Laskar
Mark H. Thiemens
Sally Newman
机构
[1] Research Center for Environmental Changes,
[2] Academia Sinica,undefined
[3] Graduate Institute of Astronomy,undefined
[4] National Central University,undefined
[5] Department of Chemistry and Biochemistry,undefined
[6] University of California at San Diego,undefined
[7] Division of Geological and Planetary Sciences,undefined
[8] California Institute of Technology,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The abundance variations of near surface atmospheric CO2 isotopologues (primarily 16O12C16O, 16O13C16O, 17O12C16O, and 18O12C16O) represent an integrated signal from anthropogenic/biogeochemical processes, including fossil fuel burning, biospheric photosynthesis and respiration, hydrospheric isotope exchange with water, and stratospheric photochemistry. Oxygen isotopes, in particular, are affected by the carbon and water cycles. Being a useful tracer that directly probes governing processes in CO2 biogeochemical cycles, Δ17O (=ln(1 + δ17O) − 0.516 × ln(1 + δ18O)) provides an alternative constraint on the strengths of the associated cycles involving CO2. Here, we analyze Δ17O data from four places (Taipei, Taiwan; South China Sea; La Jolla, United States; Jerusalem, Israel) in the northern hemisphere (with a total of 455 measurements) and find a rather narrow range (0.326 ± 0.005‰). A conservative estimate places a lower limit of 345 ± 70 PgC year−1 on the cycling flux between the terrestrial biosphere and atmosphere and infers a residence time of CO2 of 1.9 ± 0.3 years (upper limit) in the atmosphere. A Monte Carlo simulation that takes various plant uptake scenarios into account yields a terrestrial gross primary productivity of 120 ± 30 PgC year−1 and soil invasion of 110 ± 30 PgC year−1, providing a quantitative assessment utilizing the oxygen isotope anomaly for quantifying CO2 cycling.
引用
收藏
相关论文
共 50 条
  • [31] Boron Combustion in CO2 Atmosphere
    Akopdzhanyan, T. G.
    Studenikin, I. A.
    INTERNATIONAL JOURNAL OF SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS, 2022, 31 (04) : 276 - 278
  • [32] ATMOSPHERE CONTROL BY INFRARED CO2
    HUGHES, RL
    METALS ENGINEERING QUARTERLY, 1971, 11 (02): : 1 - &
  • [33] Boron Combustion in CO2 Atmosphere
    T. G. Akopdzhanyan
    I. A. Studenikin
    International Journal of Self-Propagating High-Temperature Synthesis, 2022, 31 : 276 - 278
  • [34] CONTROLLING CO2 BUILDUP IN THE ATMOSPHERE
    OMAN, H
    CHEMTECH, 1988, 18 (02) : 116 - 119
  • [35] STABILITY OF CO2 IN VENUS ATMOSPHERE
    MUKHERJE.NR
    SISCOE, GL
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1973, 54 (04): : 391 - 391
  • [36] DISSOCIATION OF CO2 IN MARTIAN ATMOSPHERE
    MCELROY, MB
    MCCONNEL.JC
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1971, 28 (06) : 879 - &
  • [37] PHOTOCHEMISTRY OF CO2 IN ATMOSPHERE OF MARS
    MCELROY, MB
    HUNTEN, DM
    JOURNAL OF GEOPHYSICAL RESEARCH, 1970, 75 (07): : 1188 - +
  • [38] Long-term observation of mass-independent oxygen isotope anomaly in stratospheric CO2
    Kawagucci, S.
    Tsunogai, U.
    Kudo, S.
    Nakagawa, F.
    Honda, H.
    Aoki, S.
    Nakazawa, T.
    Tsutsumi, M.
    Gamo, T.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (20) : 6189 - 6197
  • [39] To CO2 or not to CO2 ,that is the question!
    Hohnadel, DC
    Gruttadauria, M
    Murray, K
    Levin, M
    D'Souza, J
    CLINICAL CHEMISTRY, 2003, 49 (06) : A90 - A90
  • [40] OXYGEN ISOTOPE FRACTIONATION BETWEEN CO2 AND H2O
    BRENNINKMEIJER, CAM
    KRAFT, P
    MOOK, WG
    ISOTOPE GEOSCIENCE, 1983, 1 (02): : 181 - 190