Sequences of irreducible polynomials without prescribed coefficients over odd prime fields

被引:0
|
作者
S. Ugolini
机构
[1] Dipartimento di Matematica,
来源
关键词
Finite fields; Polynomials; Sequences; 11R09; 11T55; 12E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we construct infinite sequences of monic irreducible polynomials with coefficients in odd prime fields by means of a transformation introduced by Cohen in 1992. We make no assumptions on the coefficients of the first polynomial f0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_0$$\end{document} of the sequence, which belongs to Fp[x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{F}_p [x]$$\end{document}, for some odd prime p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}, and has positive degree n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}. If p2n-1=2e1·m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^{2n}-1 = 2^{e_1} \cdot m$$\end{document} for some odd integer m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} and non-negative integer e1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_1$$\end{document}, then, after an initial segment f0,⋯,fs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_0, \dots , f_s$$\end{document} with s≤e1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \le e_1$$\end{document}, the degree of the polynomial fi+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{i+1}$$\end{document} is twice the degree of fi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_i$$\end{document} for any i≥s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i \ge s$$\end{document}.
引用
收藏
页码:145 / 155
页数:10
相关论文
共 50 条
  • [31] Twin irreducible polynomials over finite fields
    Effinger, GW
    Hicks, KH
    Mullen, GL
    FINITE FIELDS WITH APPLICATIONS TO CODING THEORY, CRYPTOGRAPHY AND RELATED AREAS, 2002, : 94 - 111
  • [32] COUNTING IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS
    Wang, Qichun
    Kan, Haibin
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (03) : 881 - 886
  • [33] Construction of irreducible polynomials over finite fields
    Sharma, P. L.
    Ashima
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (07)
  • [34] Construction of Irreducible Polynomials over Finite Fields
    Abrahamyan, Sergey
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, 2010, 6244 : 1 - 3
  • [35] Generators and irreducible polynomials over finite fields
    Wan, DQ
    MATHEMATICS OF COMPUTATION, 1997, 66 (219) : 1195 - 1212
  • [36] Elliptic curves and explicit enumeration of irreducible polynomials with two coefficients prescribed
    Moisio, Marko
    Ranto, Kalle
    FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (03) : 798 - 815
  • [37] Irreducible compositions of polynomials over finite fields
    Melsik K. Kyuregyan
    Gohar M. Kyureghyan
    Designs, Codes and Cryptography, 2011, 61 : 301 - 314
  • [38] Visibly Irreducible Polynomials over Finite Fields
    O'Dorney, Evan
    AMERICAN MATHEMATICAL MONTHLY, 2020, 127 (02): : 112 - 124
  • [39] Fibre products of supersingular curves and the enumeration of irreducible polynomials with prescribed coefficients
    Ahmadi, Omran
    Gologlu, Faruk
    Granger, Robert
    McGuire, Gary
    Yilmaz, Emrah Sercan
    FINITE FIELDS AND THEIR APPLICATIONS, 2016, 42 : 128 - 164
  • [40] DICKSON POLYNOMIALS AND IRREDUCIBLE POLYNOMIALS OVER FINITE-FIELDS
    GAO, SH
    MULLEN, GL
    JOURNAL OF NUMBER THEORY, 1994, 49 (01) : 118 - 132