Numerical Study of Ignition and Combustion of Hydrogen-Enriched Methane in a Sequential Combustor

被引:0
|
作者
Matteo Impagnatiello
Quentin Malé
Nicolas Noiray
机构
[1] ETH Zürich,CAPS Laboratory, Department of Mechanical and Process Engineering
来源
关键词
Sequential combustor; Hydrogen blending; Turbulent combustion; Gas turbine for power generation; Combustion regime;
D O I
暂无
中图分类号
学科分类号
摘要
Ignition and combustion behavior in the second stage of a sequential combustor are investigated numerically at atmospheric pressure for pure CH4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{CH}}_{4}$$\end{document} fueling and for two CH4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{CH}}_{4}$$\end{document}-H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{H}}_{2}$$\end{document} fuel blends in 24:1 and 49:1 mass ratios , respectively, using Large Eddy Simulation (LES). Pure CH4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{CH}}_{4}$$\end{document} fueling results in a turbulent propagating flame anchored by the hot gas recirculation zones developed near the inlet of the sequential combustion chamber. As the H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{H}}_{2}$$\end{document} content increases, the combustion process changes drastically, with multiple auto-ignition kernels produced upstream of the main flame brush. Analysis of the explosive modes indicates that, for the highest H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{H}}_{2}$$\end{document} amount investigated, flame stabilization in the combustion chamber is strongly supported by auto-ignition chemistry. The analysis of fuel decomposition pathways highlights that radicals advected from the first stage flame, in particular OH, induce a rapid fuel decomposition and cause the reactivity enhancement that leads to auto-ignition upstream of the sequential flame. This behavior is promoted by the relatively large mass fraction of OH radicals found in the flow reaching the second stage, which is approximately one order of magnitude greater than it would be at chemical equilibrium. The importance of the out-of-equilibrium vitiated air on the ignition behavior is proven via an additional LES that features weak auto-ignition kernel formation when equilibrium is artificially imposed. It is therefore concluded that parameters affecting the relaxation towards chemical equilibrium of the vitiated flow can have an important influence on the operability of sequential combustors fueled with varying fractions of H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{H}}_{2}$$\end{document} blending.
引用
收藏
页码:1249 / 1273
页数:24
相关论文
共 50 条
  • [41] Numerical Study of Laminar Flame Velocity of Hydrogen-Enriched Methane Flames Using Several Detailed Reaction Mechanisms
    Ridha Ennetta
    Meryem Alaya
    Rachid Said
    [J]. Arabian Journal for Science and Engineering, 2017, 42 : 1707 - 1713
  • [42] Numerical study of compound intake on mixture formation and combustion process in a hydrogen-enriched gasoline Wankel rotary engine
    Yang, Jinxin
    Ji, Changwei
    Wang, Shuofeng
    Shi, Cheng
    Wang, Du
    Ma, Zedong
    Yang, Zixuan
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2019, 185 : 66 - 74
  • [43] Study of polycyclic aromatic hydrocarbons (PAHs) in hydrogen-enriched methane diffusion flames
    Ezenwajiaku, Chinonso
    Talibi, Midhat
    Nguyen Anh Khoa Doan
    Swaminathan, Nedunchezhian
    Balachandran, Ramanarayanan
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (14) : 7642 - 7655
  • [44] Experiment study on the combustion performance of hydrogen-enriched natural gas in a DLE burner
    Ge, Bing
    Ji, Yongbin
    Zhang, Zilai
    Zang, Shusheng
    Tian, Yinshen
    Yu, Hai
    Chen, Mingmin
    Jiao, Guangyun
    Zhang, Dongfang
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (26) : 14023 - 14031
  • [45] NUMERICAL INVESTIGATION ON COMBUSTION CHARACTERISTICS AND EMISSIONS OF HYDROGEN/METHANE BLENDS IN FLAMESHEET COMBUSTOR
    Duy-Tan Vo
    Jung, Jine-Sung
    Ryu, Jaiyoung
    [J]. PROCEEDINGS OF ASME TURBO EXPO 2023: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2023, VOL 3B, 2023,
  • [46] THERMOACOUSTIC INSTABILITIES OF HYDROGEN-ENRICHED PARTIALLY PREMIXED FLAMES IN A SWIRL COMBUSTOR
    Gong, Y.
    Fredrich, D.
    Marquis, A. J.
    Jones, W. P.
    Boxx, I.
    [J]. PROCEEDINGS OF ASME TURBO EXPO 2021: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 3B, 2021,
  • [47] Investigation of turbulent premixed methane/air and hydrogen-enriched methane/air flames in a laboratory-scale gas turbine model combustor
    Liu, Xin
    Bertsch, Michael
    Subash, Arman Ahamed
    Yu, Senbin
    Szasz, Robert-Zoltan
    Li, Zhongshan
    Petersson, Per
    Bai, Xue-Song
    Alden, Marcus
    Lorstad, Daniel
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (24) : 13377 - 13388
  • [48] Effects of hydrogen-enriched methane combustion on latent heat recovery potential and environmental impact of condensing boilers
    Balanescu, D. T.
    Homutescu, V. M.
    [J]. APPLIED THERMAL ENGINEERING, 2021, 197
  • [49] Numerical simulations of turbulent jet flames with non-premixed combustion of hydrogen-enriched fuels
    Martinez, D. Mira
    Jiang, X.
    Moulinec, C.
    Emerson, D. R.
    [J]. COMPUTERS & FLUIDS, 2013, 88 : 688 - 701
  • [50] MODELLING STEAM METHANE REFORMER OPERATION WITH HYDROGEN-ENRICHED FEEDSTOCK
    Hoppej, D.
    Variny, M.
    Kondas, R.
    [J]. 9TH INTERNATIONAL CONFERENCE ON CHEMICAL TECHNOLOGY, 2022, : 224 - 228