Existence and extremal solutions of parabolic variational–hemivariational inequalities

被引:1
|
作者
Siegfried Carl
机构
[1] Martin-Luther-Universität Halle-Wittenberg,Institut für Mathematik
来源
关键词
Parabolic variational–hemivariational inequality; Obstacle problem; Sub-supersolution; Extremal solution; 35B51; 35K86; 35R70; 47H04; 47J35;
D O I
暂无
中图分类号
学科分类号
摘要
We consider quasilinear parabolic variational–hemivariational inequalities in a cylindrical domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q=\Omega \times (0,\tau )$$\end{document} of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u\in K:\ \langle u_t+Au, v-u\rangle +\int _Q j^o(x,t, u;v-u)\,dxdt\ge 0,\ \ \forall \ v\in K, \end{aligned}$$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\subset X_0=L^p(0,\tau ;W_0^{1,p}(\Omega ))$$\end{document} is some closed and convex subset, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} is a time-dependent quasilinear elliptic operator, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\mapsto j(\cdot ,\cdot ,s)$$\end{document} is assumed to be locally Lipschitz with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(s,r)\mapsto j^o(x,t, s;r)$$\end{document} denoting its generalized directional derivative at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document} in the direction \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}. The main goal of this paper is threefold: first, an existence and comparison principle is proved; second, the existence of extremal solutions within some sector of appropriately defined sub-supersolutions is shown; third, the equivalence of the above parabolic variational–hemivariational inequality with an associated multi-valued parabolic variational inequality of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u\in K:\ \langle u_t+Au, v-u\rangle +\int _Q \eta \, (v-u)\,dxdt\ge 0,\ \ \forall \ v\in K \end{aligned}$$\end{document}with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta (x,t)\in \partial j(x,t, u(x,t))$$\end{document} is established, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\mapsto \partial j(x,t, s)$$\end{document} denotes Clarke’s generalized gradient of the locally Lipschitz function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\mapsto j(\cdot ,\cdot ,s)$$\end{document}.
引用
下载
收藏
页码:29 / 54
页数:25
相关论文
共 50 条
  • [31] Existence of Solutions for a Class of Noncoercive Variational-Hemivariational Inequalities Arising in Contact Problems
    Liu, Yongjian
    Liu, Zhenhai
    Wen, Ching-Feng
    Yao, Jen-Chih
    Zeng, Shengda
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (02): : 2037 - 2059
  • [32] Existence and approximated results of solutions for a class of nonlocal elliptic variational-hemivariational inequalities
    Liu, Yongjian
    Liu, Zhenhai
    Motreanu, Dumitru
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (17) : 9543 - 9556
  • [33] EXISTENCE AND UNIQUENESS SOLUTIONS FOR A CLASS OF HEMIVARIATIONAL INEQUALITIES
    Hashoosh, Ayed E.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (02): : 565 - 576
  • [34] Existence of solutions of parabolic variational inequalities with one-sided restrictions
    Solonukha, OV
    MATHEMATICAL NOTES, 2005, 77 (3-4) : 424 - 439
  • [35] Existence of solutions of parabolic variational inequalities with one-sided restrictions
    O. V. Solonukha
    Mathematical Notes, 2005, 77 : 424 - 439
  • [36] Inverse problems for constrained parabolic variational-hemivariational inequalities *
    Migorski, Stanislaw
    Cai, Dong-ling
    Xiao, Yi-bin
    INVERSE PROBLEMS, 2023, 39 (08)
  • [37] Differential variational–hemivariational inequalities: existence, uniqueness, stability, and convergence
    Guo-ji Tang
    Jinxia Cen
    Van Thien Nguyen
    Shengda Zeng
    Journal of Fixed Point Theory and Applications, 2020, 22
  • [38] EXISTENCE THEOREMS FOR GENERALIZED QUASI-VARIATIONAL HEMIVARIATIONAL INEQUALITIES
    Wang, Ji-An
    Ou, Yunhua
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2008, 45 (04) : 443 - 449
  • [39] Evolutionary variational-hemivariational inequalities: Existence and comparison results
    Carl, Siegfried
    Le, Vy K.
    Motreanu, Dumitru
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) : 545 - 558
  • [40] Existence results for evolutionary inclusions and variational-hemivariational inequalities
    Gasinski, Leszek
    Migorski, Stanislaw
    Ochal, Anna
    APPLICABLE ANALYSIS, 2015, 94 (08) : 1670 - 1694