Existence and extremal solutions of parabolic variational–hemivariational inequalities

被引:1
|
作者
Siegfried Carl
机构
[1] Martin-Luther-Universität Halle-Wittenberg,Institut für Mathematik
来源
关键词
Parabolic variational–hemivariational inequality; Obstacle problem; Sub-supersolution; Extremal solution; 35B51; 35K86; 35R70; 47H04; 47J35;
D O I
暂无
中图分类号
学科分类号
摘要
We consider quasilinear parabolic variational–hemivariational inequalities in a cylindrical domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q=\Omega \times (0,\tau )$$\end{document} of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u\in K:\ \langle u_t+Au, v-u\rangle +\int _Q j^o(x,t, u;v-u)\,dxdt\ge 0,\ \ \forall \ v\in K, \end{aligned}$$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\subset X_0=L^p(0,\tau ;W_0^{1,p}(\Omega ))$$\end{document} is some closed and convex subset, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} is a time-dependent quasilinear elliptic operator, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\mapsto j(\cdot ,\cdot ,s)$$\end{document} is assumed to be locally Lipschitz with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(s,r)\mapsto j^o(x,t, s;r)$$\end{document} denoting its generalized directional derivative at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document} in the direction \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}. The main goal of this paper is threefold: first, an existence and comparison principle is proved; second, the existence of extremal solutions within some sector of appropriately defined sub-supersolutions is shown; third, the equivalence of the above parabolic variational–hemivariational inequality with an associated multi-valued parabolic variational inequality of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u\in K:\ \langle u_t+Au, v-u\rangle +\int _Q \eta \, (v-u)\,dxdt\ge 0,\ \ \forall \ v\in K \end{aligned}$$\end{document}with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta (x,t)\in \partial j(x,t, u(x,t))$$\end{document} is established, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\mapsto \partial j(x,t, s)$$\end{document} denotes Clarke’s generalized gradient of the locally Lipschitz function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\mapsto j(\cdot ,\cdot ,s)$$\end{document}.
引用
下载
收藏
页码:29 / 54
页数:25
相关论文
共 50 条