Existence and concentration of positive solutions for a Schrödinger logarithmic equation

被引:0
|
作者
Claudianor O. Alves
Daniel C.  de Morais Filho
机构
[1] Universidade Federal de Campina Grande,Unidade Acadêmica de Matemática
关键词
Variational methods; Logarithmic Shrödinger equation; Positive solutions; 35A15; 35J10; 35B09;
D O I
暂无
中图分类号
学科分类号
摘要
This article concerns with the existence and concentration of positive solutions for the following logarithmic elliptic equation -ϵ2Δu+V(x)u=ulogu2,inRN,u∈H1(RN),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{lc} -{\epsilon }^2\Delta u+ V(x)u=u \log u^2, &{} \text{ in } \quad \mathbb {R}^{N}, \\ u \in H^1(\mathbb {R}^{N}), &{} \; \\ \end{array}\right. \end{aligned}$$\end{document}where ϵ>0,N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon >0, N \ge 3$$\end{document} and V is a continuous function with a global minimum. Using variational method developed by Szulkin (Ann Inst H Poincaré Anal Non Linéaire 3:77–109, 1986) for functionals which are sum of a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} functional with a convex lower semicontinuous functional, we prove, for small enough ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon >0$$\end{document}, the existence of positive solutions and concentration around of a minimum point of V, when ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} approaches zero. We also study the cases when V is periodic or asymptotically periodic.
引用
收藏
相关论文
共 50 条
  • [31] Positive solutions of a Schrödinger equation with critical nonlinearity
    Mónica Clapp
    Yanheng Ding
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2004, 55 : 592 - 605
  • [32] Multiple positive solutions for a nonlinear Schrödinger equation
    Th. BartschRID="*"
    Z.-Q. WangRID="*"ID="*"Research supported by NATO grant CRG 970179 and DFG grant Gi 30/68-1
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2000, 51 : 366 - 384
  • [33] Existence of a positive solution for a class of Schrödinger logarithmic equations on exterior domains
    Alves, Claudianor O.
    da Silva, Ismael S.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (03):
  • [34] Existence of Solutions for a Quasilinear Schr?dinger Equation with Potential Vanishing
    Yan-fang XUE
    Jian-xin HAN
    Xin-cai ZHU
    ActaMathematicaeApplicataeSinica, 2023, 39 (03) : 696 - 706
  • [35] Existence of Solutions for a Quasilinear Schrödinger Equation with Potential Vanishing
    Yan-fang Xue
    Jian-xin Han
    Xin-cai Zhu
    Acta Mathematicae Applicatae Sinica, English Series, 2023, 39 : 696 - 706
  • [36] Logarithmic Schr?dinger equation and isothermal fluids
    Carles, Remi
    EMS SURVEYS IN MATHEMATICAL SCIENCES, 2022, 9 (01) : 99 - 134
  • [37] Multiplicity and concentration of solutions to the nonlinear magnetic Schrödinger equation
    Chao Ji
    Vicenţiu D. Rădulescu
    Calculus of Variations and Partial Differential Equations, 2020, 59
  • [38] Existence and concentration result for a quasilinear Schrödinger equation with critical growth
    Liuyang Shao
    Haibo Chen
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [39] Energy solutions and concentration problem of fractional Schrödinger equation
    Peiluan Li
    Yuan Yuan
    Boundary Value Problems, 2018
  • [40] Concentration behaviors of nodal solutions for a semiclassical Schrödinger equation
    Liu, Jiaquan
    Wang, Zhi-Qiang
    Zhao, Fukun
    JOURNAL D ANALYSE MATHEMATIQUE, 2025,