Some monotonicity properties in F-normed Musielak–Orlicz spaces

被引:0
|
作者
Radosław Kaczmarek
机构
[1] Adam Mickiewicz University,Faculty of Mathematics and Computer Science
[2] Poznań,undefined
来源
Aequationes mathematicae | 2020年 / 94卷
关键词
Musielak–Orlicz spaces; Mazur–Orlicz F-norm; F-normed Köthe spaces; Strict monotonicity; Orthogonal strict monotonicity; Lower local uniform monotonicity; Orthogonal lower local uniform monotonicity; Upper local uniform monotonicity; Orthogonal upper local uniform monotonicity; Primary 46E30; Secondary 46A80;
D O I
暂无
中图分类号
学科分类号
摘要
Strict monotonicity, lower local uniform monotonicity, upper local uniform monotonicity and their orthogonal counterparts are considered in the case of Musielak–Orlicz function spaces LΦ(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\Phi (\mu )$$\end{document} endowed with the Mazur–Orlicz F-norm as well as in the case of their subspaces EΦ(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^\Phi (\mu )$$\end{document} with the F-norm induced from LΦ(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\Phi (\mu )$$\end{document}. The presented results generalize some of the results from Cui et al. (Aequ Math 93:311–343, 2019) and Hudzik et al. (J Nonlinear Convex Anal 17(10):1985–2011, 2016), obtained only for Orlicz spaces as well as their subspaces of order continuous elements equipped with the Mazur–Orlicz F-norm.
引用
收藏
页码:865 / 885
页数:20
相关论文
共 50 条
  • [1] Some monotonicity properties in F-normed Musielak-Orlicz spaces
    Kaczmarek, Radoslaw
    [J]. AEQUATIONES MATHEMATICAE, 2020, 94 (05) : 865 - 885
  • [2] Lower Local Uniform Monotonicity in F-Normed Musielak-Orlicz Spaces
    Liu, Yanli
    Xue, Yangyang
    Cui, Yunan
    [J]. AXIOMS, 2024, 13 (04)
  • [3] Upper Local Uniform Monotonicity in F-Normed Musielak-Orlicz Spaces
    Liu, Yanli
    Xue, Yangyang
    Cui, Yunan
    [J]. AXIOMS, 2023, 12 (06)
  • [4] Points of monotonicity in F-normed Orlicz function spaces
    Yabo Yang
    Yunan Cui
    Radosław Kaczmarek
    [J]. Aequationes mathematicae, 2023, 97 : 659 - 682
  • [5] Points of monotonicity in F-normed Orlicz function spaces
    Yang, Yabo
    Cui, Yunan
    Kaczmarek, Radoslaw
    [J]. AEQUATIONES MATHEMATICAE, 2023, 97 (04) : 659 - 682
  • [6] Geometric properties of F-normed Orlicz spaces
    Yunan Cui
    Henryk Hudzik
    Radosław Kaczmarek
    Paweł Kolwicz
    [J]. Aequationes mathematicae, 2019, 93 : 311 - 343
  • [7] Geometric properties of F-normed Orlicz spaces
    Cui, Yunan
    Hudzik, Henryk
    Kaczmarek, Radoslaw
    Kolwicz, Pawel
    [J]. AEQUATIONES MATHEMATICAE, 2019, 93 (01) : 311 - 343
  • [8] Uniform monotonicity of Orlicz spaces equipped with the Mazur-Orlicz F-norm and dominated best approximation in F-normed Kothe spaces
    Cui, Yunan
    Hudzik, Henryk
    Kaczmarek, Radoslaw
    Kolwicz, Pawel
    [J]. MATHEMATISCHE NACHRICHTEN, 2022, 295 (03) : 487 - 511
  • [9] SOME MONOTONICITY PROPERTIES IN CERTAIN s-NORMED (0 < s < 1) AND F-NORMED LATTICES
    Hudzik, Henryk
    Kaczmarek, Radoslaw
    Wojtowicz, Marek
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (10) : 1985 - 2011
  • [10] F-normed spaces and linear operators
    Sookoo, Norris
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2021, 24 (04) : 911 - 919