A nonlinear galerkin mixed element method and a posteriori error estimator for the stationary navier-stokes equations

被引:2
|
作者
Zhen-dong L. [1 ,2 ]
Jiang Z. [2 ]
机构
[1] Department of Mathematics, Capital Normal University, Beijing
[2] ICCES, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing
基金
中国国家自然科学基金;
关键词
error estimate; Navier-Stokes equation; nonlinear Galerkin mixed element method; O241.4; posteriori error estimator;
D O I
10.1007/BF02437668
中图分类号
学科分类号
摘要
A nonlinear Galerkin mixed element (NGME) method and a posteriori error exstimator based on the method are established for the stationary Navier-Stokes equations. The existence and error estimates of the NGME solution are first discussed, and then a posteriori error estimator based on the NGME method is derived. © 1980 Editorial Committee of Applied Mathematics and Mechanics.
引用
收藏
页码:1194 / 1206
页数:12
相关论文
共 50 条
  • [31] A mixed virtual element method for the Navier-Stokes equations
    Gatica, Gabriel N.
    Munar, Mauricio
    Sequeira, Filander A.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (14): : 2719 - 2762
  • [32] ON A GALERKIN-LAGRANGE MULTIPLIER METHOD FOR THE STATIONARY NAVIER-STOKES EQUATIONS
    KARAKASHIAN, CA
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (05) : 909 - 923
  • [33] A nonconforming finite element method for the stationary Navier-Stokes equations
    Karakashian, OA
    Jureidini, WN
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (01) : 93 - 120
  • [34] A posteriori error estimates for the large eddy simulation applied to stationary Navier-Stokes equations
    Nassreddine, Ghina
    Omnes, Pascal
    Sayah, Toni
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (05) : 1468 - 1498
  • [35] A POSTERIORI ERROR ESTIMATES FOR A DISTRIBUTED OPTIMAL CONTROL PROBLEM OF THE STATIONARY NAVIER-STOKES EQUATIONS
    Allendes, Alejandro
    Fuica, Francisco
    Otarola, Enrique
    Quero, Daniel
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (04) : 2898 - 2923
  • [36] A priori error estimates of a discontinuous Galerkin method for the Navier-Stokes equations
    Bajpai, Saumya
    Goswami, Deepjyoti
    Ray, Kallol
    [J]. NUMERICAL ALGORITHMS, 2023, 94 (02) : 937 - 1002
  • [37] A priori error estimates of a discontinuous Galerkin method for the Navier-Stokes equations
    Saumya Bajpai
    Deepjyoti Goswami
    Kallol Ray
    [J]. Numerical Algorithms, 2023, 94 : 937 - 1002
  • [38] On a hierarchical error estimator combined with a stabilized method for the Navier-Stokes equations
    Araya, Rodolfo
    Poza, Abner H.
    Valentin, Frederic
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2012, 28 (03) : 782 - 806
  • [39] RECOVERY-BASED ERROR ESTIMATOR FOR STABILIZED FINITE ELEMENT METHOD FOR THE STATIONARY NAVIER-STOKES PROBLEM
    Song, Lina
    Su, Haiyan
    Feng, Xinlong
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (06): : A3758 - A3772
  • [40] A discontinuous Galerkin method for the Navier-Stokes equations
    Lomtev, I
    Karniadakis, GE
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1999, 29 (05) : 587 - 603