Magnetic fluffy dark matter

被引:0
|
作者
Kunal Kumar
Arjun Menon
Tim M. P. Tait
机构
[1] Northwestern University,Department of Physics and Astronomy
[2] Physics Division,Institute of Theoretical Science
[3] Illinois Institute of Technology,Department of Physics and Astronomy
[4] University of Oregon,Kavli Institute for Theoretical Physics
[5] University of California,undefined
[6] University of California,undefined
来源
Journal of High Energy Physics | / 2012卷
关键词
Beyond Standard Model; Technicolor and Composite Models;
D O I
暂无
中图分类号
学科分类号
摘要
We explore extensions of inelastic Dark Matter and Magnetic inelastic Dark Matter where the WIMP can scatter to a tower of heavier states. We assume a WIMP mass mχ ~ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{O} $\end{document}(1-100) GeV and a constant splitting between successive states δ ~ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{O} $\end{document}(1-100) keV. For the spin-independent scattering scenario we find that the direct experiments CDMS and XENON strongly constrain most of the DAMA/LIBRA preferred parameter space, while for WIMPs that interact with nuclei via their magnetic moment a region of parameter space corresponding to mχ ~ 11 GeV and δ < 15 keV is allowed by all the present direct detection constraints.
引用
收藏
相关论文
共 50 条
  • [11] Dark matter and dark matter candidates
    Olive, Keith A.
    ADVANCES IN SPACE RESEARCH, 2008, 42 (03) : 581 - 590
  • [12] Muon anomalous magnetic moment and supersymmetric dark matter
    Baltz, EA
    Gondolo, P
    PARTICLES, STRINGS AND COSMOLOGY, PROCEEDINGS, 2001, : 309 - 312
  • [13] Observing primordial magnetic fields through Dark Matter
    Ramazanov, Sabir
    Urban, Federico R.
    Vikman, Alexander
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (02):
  • [14] Magnetic field in holographic superconductor with dark matter sector
    Nakonieczny, Lukasz
    Rogatko, Marek
    Wysokinski, Karol I.
    PHYSICAL REVIEW D, 2015, 91 (04):
  • [15] Composite magnetic dark matter and the 130 GeV line
    Cline, James M.
    Moore, Guy D.
    Frey, Andrew R.
    PHYSICAL REVIEW D, 2012, 86 (11):
  • [16] Dark matter clues in the muon anomalous magnetic moment
    Cembranos, JAR
    Dobado, A
    Maroto, AL
    PHYSICAL REVIEW D, 2006, 73 (05):
  • [17] Magnetic dipole moment and keV neutrino dark matter
    Geng, Chao-Qiang
    Takahashi, Ryo
    PHYSICS LETTERS B, 2012, 710 (02) : 324 - 327
  • [18] Dark-matter electric and magnetic dipole moments
    Sigurdson, K
    Doran, M
    Kurylov, A
    Caldwell, RR
    Kamionkowski, M
    PHYSICAL REVIEW D, 2004, 70 (08):
  • [19] Light magnetic dark matter in direct detection searches
    Del Nobile, Eugenio
    Kouvaris, Chris
    Panci, Paolo
    Sannino, Francesco
    Virkajarvi, Jussi
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2012, (08):
  • [20] Dark Matter Minihalos from Primordial Magnetic Fields
    Ralegankar, Pranjal
    PHYSICAL REVIEW LETTERS, 2023, 131 (23)