On Generalized Walsh Bases

被引:0
|
作者
Dorin Ervin Dutkay
Gabriel Picioroaga
Sergei Silvestrov
机构
[1] University of Central Florida,Department of Mathematics
[2] University of South Dakota,Department of Mathematical Sciences
[3] Mälardalen University,Division of Applied Mathematics, The School of Education, Culture and Communication (UKK)
来源
关键词
Cuntz algebras; Walsh basis; Hadamard matrix; Uncertainty principle;
D O I
暂无
中图分类号
学科分类号
摘要
This paper continues the study of orthonormal bases (ONB) of L2[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}[0,1]$\end{document} introduced in Dutkay et al. (J. Math. Anal. Appl. 409(2):1128–1139, 2014) by means of Cuntz algebra ON\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}_{N}$\end{document} representations on L2[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}[0,1]$\end{document}. For N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N=2$\end{document}, one obtains the classic Walsh system. We show that the ONB property holds precisely because the ON\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}_{N}$\end{document} representations are irreducible. We prove an uncertainty principle related to these bases. As an application to discrete signal processing we find a fast generalized transform and compare this generalized transform with the classic one with respect to compression and sparse signal recovery.
引用
收藏
页码:73 / 90
页数:17
相关论文
共 50 条
  • [21] On the generalized Ball bases
    Jorge Delgado
    Juan Manuel Peña
    Advances in Computational Mathematics, 2006, 24 : 263 - 280
  • [22] A Generalized Walsh System and Its Fast Algorithm
    Yuan, Xixi
    Cai, Zhanchuan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 5222 - 5233
  • [23] ON GENERALIZED UNIQUENESS THEOREMS FOR WALSH-SERIES
    YONEDA, K
    ACTA MATHEMATICA HUNGARICA, 1984, 43 (3-4) : 209 - 217
  • [24] On the universal pair with respect to the generalized Walsh system
    Episkoposian, Sergo A.
    Grigorian, Martin G.
    Grigorian, Tigran M.
    ADVANCES IN OPERATOR THEORY, 2024, 9 (01)
  • [25] On the universal pair with respect to the generalized Walsh system
    Sergo A. Episkoposian
    Martin G. Grigorian
    Tigran M. Grigorian
    Advances in Operator Theory, 2024, 9
  • [26] eGHWT: The Extended Generalized Haar–Walsh Transform
    Naoki Saito
    Yiqun Shao
    Journal of Mathematical Imaging and Vision, 2022, 64 : 261 - 283
  • [27] ON THE EXISTENCE OF UNIVERSAL SERIES BY THE GENERALIZED WALSH SYSTEM
    Episkoposian, Sergo A.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 10 (02): : 415 - 429
  • [28] On Weaving Generalized Frames and Generalized Riesz Bases
    Deepshikha
    Samanta, Aniruddha
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (01) : 361 - 378
  • [29] On Weaving Generalized Frames and Generalized Riesz Bases
    Aniruddha Deepshikha
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 361 - 378
  • [30] Dual bases for a new family of generalized ball bases
    Wu, HY
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2004, 22 (01) : 79 - 88