On Generalized Walsh Bases

被引:0
|
作者
Dorin Ervin Dutkay
Gabriel Picioroaga
Sergei Silvestrov
机构
[1] University of Central Florida,Department of Mathematics
[2] University of South Dakota,Department of Mathematical Sciences
[3] Mälardalen University,Division of Applied Mathematics, The School of Education, Culture and Communication (UKK)
来源
关键词
Cuntz algebras; Walsh basis; Hadamard matrix; Uncertainty principle;
D O I
暂无
中图分类号
学科分类号
摘要
This paper continues the study of orthonormal bases (ONB) of L2[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}[0,1]$\end{document} introduced in Dutkay et al. (J. Math. Anal. Appl. 409(2):1128–1139, 2014) by means of Cuntz algebra ON\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}_{N}$\end{document} representations on L2[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}[0,1]$\end{document}. For N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N=2$\end{document}, one obtains the classic Walsh system. We show that the ONB property holds precisely because the ON\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}_{N}$\end{document} representations are irreducible. We prove an uncertainty principle related to these bases. As an application to discrete signal processing we find a fast generalized transform and compare this generalized transform with the classic one with respect to compression and sparse signal recovery.
引用
收藏
页码:73 / 90
页数:17
相关论文
共 50 条