共 50 条
Classification of Finite Irreducible Conformal Modules over N = 2 Lie Conformal Superalgebras of Block Type
被引:0
|作者:
Chunguang Xia
机构:
[1] China University of Mining and Technology,School of Mathematics
来源:
关键词:
Finite conformal module;
Lie conformal superalgebra;
= 2 conformal superalgebra;
Composition factor;
17B10;
17B65;
17B68;
17B69;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We introduce the N = 2 Lie conformal superalgebras K(p)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\frak {K}}(p)$\end{document} of Block type, and classify their finite irreducible conformal modules for any nonzero parameter p. In particular, we show that such a conformal module admits a nontrivial extension of a finite conformal module M over K2 if p = − 1 and M has rank (2 + 2), where K2 is an N = 2 conformal subalgebra of K(p)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\frak {K}}(p)$\end{document}. As a byproduct, we obtain the classification of finite irreducible conformal modules over a series of finite Lie conformal superalgebras k(n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\frak k}(n)$\end{document} for n ≥ 1. Composition factors of all the involved reducible conformal modules are also determined.
引用
收藏
页码:1731 / 1757
页数:26
相关论文