Global existence and large time behavior of solutions of a time fractional reaction diffusion system

被引:0
|
作者
Ahmed Alsaedi
Bashir Ahmad
Mokhtar Kirane
Rafika Lassoued
机构
[1] King Abdulaziz University,Nonlinear Analysis and Applied Mathematics (NAAM)
[2] La Rochelle University,Research Group, Department of Mathematics, Faculty of Science
[3] Laboratoire de mathématiques appliquées et de ľanalyse harmonique Avenue de ľenvironnement,LaSIE
来源
Fractional Calculus and Applied Analysis | 2020年 / 23卷
关键词
Primary 35B01; Secondary 35B40; 26A33; reaction-diffusion system; fractional calculus; Caputo derivative; local and global existence; large time behavior;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, it is proved that a time fractional reaction diffusion system with reaction terms of the Brusselator type admits a global solution by using the feedback method of F. Rothe [20]. Furthermore, some results on the large time behavior of the solutions are obtained. We give a positive answer to Problem 6 of the valuable paper of Gal and Warma [6].
引用
收藏
页码:390 / 407
页数:17
相关论文
共 50 条
  • [21] Global Existence and Large Time Behavior of Solutions to 3D MHD System Near Equilibrium
    Yamin Xiao
    Baoquan Yuan
    Results in Mathematics, 2021, 76
  • [22] Existence of global solutions in time for reaction-diffusion systems with inhomogeneous terms in cones
    Igarashi, Takefumi
    Umeda, Noriaki
    HIROSHIMA MATHEMATICAL JOURNAL, 2012, 42 (02) : 267 - 291
  • [23] THE BLOW-UP AND GLOBAL EXISTENCE OF SOLUTIONS OF CAUCHY PROBLEMS FOR A TIME FRACTIONAL DIFFUSION EQUATION
    Zhang, Quan-Guo
    Sun, Hong-Rui
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2015, 46 (01) : 69 - 92
  • [24] Global existence and finite time blow up for a reaction-diffusion system
    Wang, MX
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2000, 51 (01): : 160 - 167
  • [25] Global existence and finite time blow up for a reaction-diffusion system
    M. Wang
    Zeitschrift für angewandte Mathematik und Physik, 2000, 51 : 160 - 167
  • [26] Global existence and global non-existence of solutions to a reaction-diffusion system
    Zheng, SN
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (03) : 327 - 340
  • [27] Global existence and blow-up of solutions of the time-fractional space-involution reaction-diffusion equation
    Tapdigoglu, Ramiz
    Torebek, Berikbol
    TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (03) : 960 - 969
  • [28] Existence and uniqueness of weak solutions to a truncated system for a class of time-fractional reaction-diffusion-advection systems
    Wang, Sen
    Zhou, Xian-Feng
    Pang, Denghao
    Jiang, Wei
    APPLIED MATHEMATICS LETTERS, 2023, 144
  • [29] Non-existence of Global Solutions to a System of Fractional Diffusion Equations
    Kirane, M.
    Ahmad, B.
    Alsaedi, A.
    Al-Yami, M.
    ACTA APPLICANDAE MATHEMATICAE, 2014, 133 (01) : 235 - 248
  • [30] Non-existence of Global Solutions to a System of Fractional Diffusion Equations
    M. Kirane
    B. Ahmad
    A. Alsaedi
    M. Al-Yami
    Acta Applicandae Mathematicae, 2014, 133 : 235 - 248