On algebras of P-Ehresmann semigroups and their associate partial semigroups

被引:0
|
作者
Shoufeng Wang
机构
[1] Yunnan Normal University,Department of Mathematics
来源
Semigroup Forum | 2017年 / 95卷
关键词
-Ehresmann semigroups; Associate partial semigroups; Semigroup algebras; Partial semigroup algebras;
D O I
暂无
中图分类号
学科分类号
摘要
P-Ehresmann semigroups are introduced by Jones as a common generalization of Ehresmann semigroups and regular ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-semigroups. Ehresmann semigroups and their semigroup algebras are investigated by many authors in literature. In particular, Stein shows that under some finiteness condition, the semigroup algebra of an Ehresmann semigroup with a left (or right) restriction condition is isomorphic to the category algebra of the corresponding Ehresmann category. In this paper, we generalize this result to P-Ehresmann semigroups. More precisely, we show that for a left (or right) P-restriction locally Ehresmann P-Ehresmann semigroup S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{S}$$\end{document}, if its projection set is principally finite, then we can give an algebra isomorphism between the semigroup algebra of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{S}$$\end{document} and the partial semigroup algebra of the associate partial semigroup of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{S}$$\end{document}. Some interpretations and necessary examples are also provided to show why the above isomorphism dose not work for more general P-Ehresmann semigroups.
引用
收藏
页码:569 / 588
页数:19
相关论文
共 50 条
  • [21] Algebras of Ehresmann semigroups and categories (vol 95, pg 509, 2017)
    Stein, Itamar
    SEMIGROUP FORUM, 2018, 96 (03) : 603 - 607
  • [22] Ehresmann Semigroups from a Range Restriction Viewpoint
    Hajji, Wadii
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [23] Good B-quasi-Ehresmann semigroups
    He Yong
    Shum, KarPing
    Wang ZhengPan
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (05) : 1345 - 1356
  • [24] Good B-quasi-Ehresmann semigroups
    HE Yong1
    2Department of Mathematics
    3Department of Mathematics
    ScienceChina(Mathematics), 2010, 53 (05) : 308 - 319
  • [25] U-Abundant Semigroups with Ehresmann Transversals
    Ma, Siyao
    Ren, Xueming
    Gong, Chunmei
    ALGEBRA COLLOQUIUM, 2018, 25 (03) : 519 - 532
  • [26] Good B-quasi-Ehresmann semigroups
    Yong He
    KarPing Shum
    ZhengPan Wang
    Science China Mathematics, 2010, 53 : 1345 - 1356
  • [27] Several Locality Semigroups, Path Semigroups and Partial Semigroups
    Zheng, Shanghua
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2024, 48 (06) : 865 - 880
  • [28] Quasi-C-Ehresmann Semigroups and Their Subclasses
    Gang Li
    Y.Q. Guo
    K.P. Shum
    Semigroup Forum, 2005, 70 : 369 - 390
  • [29] The translational hull of strongly right Ehresmann semigroups
    Ren, Xueming
    Wang, Juan
    RESEARCH ON NUMBER THEORY AND SMARANDACHE NOTIONS, 2010, : 86 - 92
  • [30] Quasi-C-Ehresmann semigroups and their subclasses
    Li, G
    Guo, YQ
    Shum, KP
    SEMIGROUP FORUM, 2005, 70 (03) : 369 - 390