On algebras of P-Ehresmann semigroups and their associate partial semigroups

被引:0
|
作者
Shoufeng Wang
机构
[1] Yunnan Normal University,Department of Mathematics
来源
Semigroup Forum | 2017年 / 95卷
关键词
-Ehresmann semigroups; Associate partial semigroups; Semigroup algebras; Partial semigroup algebras;
D O I
暂无
中图分类号
学科分类号
摘要
P-Ehresmann semigroups are introduced by Jones as a common generalization of Ehresmann semigroups and regular ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-semigroups. Ehresmann semigroups and their semigroup algebras are investigated by many authors in literature. In particular, Stein shows that under some finiteness condition, the semigroup algebra of an Ehresmann semigroup with a left (or right) restriction condition is isomorphic to the category algebra of the corresponding Ehresmann category. In this paper, we generalize this result to P-Ehresmann semigroups. More precisely, we show that for a left (or right) P-restriction locally Ehresmann P-Ehresmann semigroup S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{S}$$\end{document}, if its projection set is principally finite, then we can give an algebra isomorphism between the semigroup algebra of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{S}$$\end{document} and the partial semigroup algebra of the associate partial semigroup of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{S}$$\end{document}. Some interpretations and necessary examples are also provided to show why the above isomorphism dose not work for more general P-Ehresmann semigroups.
引用
收藏
页码:569 / 588
页数:19
相关论文
共 50 条