A machine learning approach for differentiating malignant from benign enhancing foci on breast MRI

被引:0
|
作者
Natascha C. D’Amico
Enzo Grossi
Giovanni Valbusa
Francesca Rigiroli
Bernardo Colombo
Massimo Buscema
Deborah Fazzini
Marco Ali
Ala Malasevschi
Gianpaolo Cornalba
Sergio Papa
机构
[1] Centro Diagnostico Italiano S.p.A.,Unit of Diagnostic Imaging and Stereotactic Radiotherapy
[2] University Campus Bio-Medico of Rome,Computer Systems & Bioinformatics Laboratory Department of Engineering
[3] Bracco Imaging S.p.A.,undefined
[4] Università degli Studi di Milano,undefined
[5] Scuola di specializzazione di Radiodiagnostica,undefined
[6] Centro Ricerche Semeion,undefined
关键词
Artificial intelligence; Breast neoplasms; Gadobenic acid; Machine learning; Magnetic resonance imaging;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Editorial for "Differentiating benign and malignant breast lesions in diffusion kurtosis MRI: Does the averaging procedure matter?"
    Karan, Belgin
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2022, 56 (05) : 1353 - 1354
  • [32] Retrospective analysis of the utility of multiparametric MRI for differentiating between benign and malignant breast lesions in women in China
    Fan, Wei Xiong
    Chen, Xiao Feng
    Cheng, Feng Yan
    Cheng, Ya Bao
    Xu, Tai
    Zhu, Wen Biao
    Zhu, Xiao Lei
    Li, Gui Jin
    Li, Shuai
    MEDICINE, 2018, 97 (04)
  • [33] A Machine Learning Approach to Classifying Benign, Premalignant, and Malignant Endometrial Biopsies
    Papke, David J.
    Tyekucheva, Svitlana
    Downing, Michael J.
    Mutter, George
    MODERN PATHOLOGY, 2018, 31 : 443 - 444
  • [34] A Machine Learning Approach to Classifying Benign, Premalignant, and Malignant Endometrial Biopsies
    Papke, David J.
    Tyekucheva, Svitlana
    Downing, Michael J.
    Mutter, George
    LABORATORY INVESTIGATION, 2018, 98 : 443 - 444
  • [35] Deep Learning for Differentiating Benign From Malignant Parotid Lesions on MR Images
    Xia, Xianwu
    Feng, Bin
    Wang, Jiazhou
    Hua, Qianjin
    Yang, Yide
    Sheng, Liang
    Mou, Yonghua
    Hu, Weigang
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [36] Differentiating Benign from Malignant Cystic Renal Masses using CT Texture-based Machine Learning Algorithms
    Ranlachandran, Anupama
    RADIOLOGY-IMAGING CANCER, 2024, 6 (02): : e249007
  • [37] A new scoring system for differentiating malignant from benign "second-look" breast lesions detected by MRI in patients with known breast cancer
    Ziada, K.
    Siu, M.
    Qassid, O.
    Krupa, J.
    CLINICAL RADIOLOGY, 2023, 78 (08) : e560 - e567
  • [38] Diagnosis of benign and malignant breast tumours by MRI
    Bradbury, J
    LANCET, 1997, 350 (9070): : 35 - 35
  • [39] Contribution of IVIM to Conventional Dynamic Contrast Enhanced and Diffusion-Weighted MRI in Differentiating Benign from Malignant Breast Masses
    Wang, Qingjun
    Guo, Yong
    Zhang, Jing
    Wang, Zijun
    Huang, Minhua
    Zhang, Yun
    BREAST CARE, 2016, 11 (04) : 254 - 258
  • [40] Differentiating between Benign and Malignant non-Mass Enhancing Lesions in Breast DCE-MRI by Using Curvelet-based Textural Features
    Ayatollahi, Fazael
    Eskandari, Parinaz
    Shokouhi, Shahriar B.
    2018 4TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS), 2018, : 101 - 105