Managing Systems with Non-convex Positive Feedback

被引:0
|
作者
W.A. Brock
D. Starrett
机构
[1] 1986 S. 3rd East,
来源
关键词
basins of attraction; dynamic optimization; lake ecology; non-convex dynamics; positive feedback;
D O I
暂无
中图分类号
学科分类号
摘要
We study here optimal management of dynamic ecological systemsthat exhibit a destabilizing positive feedback. The prototypeexample is that of a shallow lake in which phosphorous loadingplaced by anthropogenic activities (fertilizers for farmingand gardening) is stored in sediments until a critical levelis reached after which there is a destabilizing return to thewater – the tradeoff between farming interests and lake qualitygenerates an optimal control problem. We show that in such systems, there may be a variety of local optima and associatedbasins of attraction wherein the optimal path may depend onstarting state (phosphorous stock). We characterize the variouspossible optimal behaviors and identify the ambiguities thatcan only be resolved by choice of functional form.
引用
收藏
页码:575 / 602
页数:27
相关论文
共 50 条
  • [41] Regularized bundle methods for convex and non-convex risks
    Do, Trinh-Minh-Tri
    Artieres, Thierry
    Journal of Machine Learning Research, 2012, 13 : 3539 - 3583
  • [42] About the non-convex optimization problem induced by non-positive semidefinite kernel learning
    Ingo Mierswa
    Katharina Morik
    Advances in Data Analysis and Classification, 2008, 2 : 241 - 258
  • [43] About the non-convex optimization problem induced by non-positive semidefinite kernel learning
    Mierswa, Ingo
    Morik, Katharina
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2008, 2 (03) : 241 - 258
  • [44] Convex drawings of graphs with non-convex boundary constraints
    Hong, Seok-Hee
    Nagamochi, Hiroshi
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (12) : 2368 - 2380
  • [45] Convex or non-convex? On the nature of the feasible domain of laminates
    Picchi Scardaoni, Marco
    Montemurro, Marco
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2021, 85
  • [46] Accelerated algorithms for convex and non-convex optimization on manifolds
    Lin, Lizhen
    Saparbayeva, Bayan
    Zhang, Michael Minyi
    Dunson, David B.
    MACHINE LEARNING, 2025, 114 (03)
  • [47] Convex and Non-convex Optimization Under Generalized Smoothness
    Li, Haochuan
    Qian, Jian
    Tian, Yi
    Rakhlin, Alexander
    Jadbabaie, Ali
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [48] Regularized Bundle Methods for Convex and Non-Convex Risks
    Trinh-Minh-Tri Do
    Artieres, Thierry
    JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 3539 - 3583
  • [49] Spectral gaps for spin systems: Some non-convex phase examples
    Gentil, I
    Roberto, C
    JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 180 (01) : 66 - 84
  • [50] Computing the Domain of Attraction of Switching Systems Subject to Non-Convex Constraints
    Athanasopoulos, Nikolaos
    Jungers, Raphael M.
    HSCC'16: PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON HYBRID SYSTEMS: COMPUTATION AND CONTROL, 2016, : 41 - 50