Extremal functions for optimal Sobolev inequalities on compact manifolds

被引:0
|
作者
Zindine Djadli
Olivier Druet
机构
[1] Université de Cergy-Pontoise,
[2] Département de Mathématiques,undefined
[3] Site de Saint-Martin,undefined
[4] 2 Avenue Adolphe Chauvin,undefined
[5] BP 222 Pontoise,undefined
[6] 95302 Cergy-Pontoise Cedex,undefined
[7] France ({Zindine.Djadli,undefined
[8] Olivier.Druet}@math.u-cergy.fr),undefined
来源
Calculus of Variations and Partial Differential Equations | 2001年 / 12卷
关键词
Compact Manifold; Sobolev Inequality; Extremal Function; Optimal Sobolev Inequality;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:59 / 84
页数:25
相关论文
共 50 条
  • [31] Monotonicity of the Extremal Functions for One-dimensional Inequalities of Logarithmic Sobolev Type
    Miclo, Laurent
    SEMINAIRE DE PROBABILITES XLII, 2009, 1979 : 103 - 130
  • [32] Optimal Constants in Critical Sobolev Inequalities on Riemannian Manifolds in the Presence of Symmetries
    Zoé Faget
    Annals of Global Analysis and Geometry, 2003, 24 : 161 - 200
  • [33] Optimal constants in critical Sobolev inequalities on Riemannian manifolds in the presence of symmetries
    Faget, Z
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2003, 24 (02) : 161 - 200
  • [34] Optimal Normed Sobolev Type Inequalities on Manifolds I: The Nash Prototype
    Ceccon, Jurandir
    Duran, Carlos
    Montenegro, Marcos
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (01) : 913 - 952
  • [35] Optimal Normed Sobolev Type Inequalities on Manifolds I: The Nash Prototype
    Jurandir Ceccon
    Carlos Durán
    Marcos Montenegro
    The Journal of Geometric Analysis, 2021, 31 : 913 - 952
  • [36] ON THE DENSITY OF SMOOTH FUNCTIONS BETWEEN 2 COMPACT MANIFOLDS IN SOBOLEV SPACES
    BETHUEL, F
    ZHENG, XM
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 303 (10): : 447 - 449
  • [37] HARDY-SOBOLEV-MAZ'YA INEQUALITIES: SYMMETRY AND BREAKING SYMMETRY OF EXTREMAL FUNCTIONS
    Gazzini, Marita
    Musina, Roberta
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (06) : 993 - 1007
  • [38] Refined Sobolev inequalities on manifolds with ends
    Bouclet, Jean-Marc
    Sire, Yannick
    MATHEMATICAL RESEARCH LETTERS, 2014, 21 (04) : 663 - 675
  • [39] Sobolev interpolation inequalities on Hadamard manifolds
    Farkas, Csaba
    Kristaly, Alexandru
    Szakal, Aniko
    2016 IEEE 11TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI), 2016, : 161 - 165
  • [40] Sobolev type inequalities on Riemannian manifolds
    Adriano, Levi
    Xia, Changyu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) : 372 - 383