The structure of the cohesin ATPase elucidates the mechanism of SMC–kleisin ring opening

被引:0
|
作者
Kyle W. Muir
Yan Li
Felix Weis
Daniel Panne
机构
[1] European Molecular Biology Laboratory, Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology
[2] MRC Laboratory of Molecular Biology,undefined
[3] European Molecular Biology Laboratory,undefined
[4] Structural and Computational Biology Unit,undefined
[5] University of Leicester,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Genome regulation requires control of chromosome organization by SMC–kleisin complexes. The cohesin complex contains the Smc1 and Smc3 subunits that associate with the kleisin Scc1 to form a ring-shaped complex that can topologically engage chromatin to regulate chromatin structure. Release from chromatin involves opening of the ring at the Smc3–Scc1 interface in a reaction that is controlled by acetylation and engagement of the Smc ATPase head domains. To understand the underlying molecular mechanisms, we have determined the 3.2-Å resolution cryo-electron microscopy structure of the ATPγS-bound, heterotrimeric cohesin ATPase head module and the 2.1-Å resolution crystal structure of a nucleotide-free Smc1–Scc1 subcomplex from Saccharomyces cerevisiae and Chaetomium thermophilium. We found that ATP-binding and Smc1–Smc3 heterodimerization promote conformational changes within the ATPase that are transmitted to the Smc coiled-coil domains. Remodeling of the coiled-coil domain of Smc3 abrogates the binding surface for Scc1, thus leading to ring opening at the Smc3–Scc1 interface.
引用
收藏
页码:233 / 239
页数:6
相关论文
共 50 条
  • [31] Helical inchworming: a novel translocation mechanism for a ring ATPase
    Alexander B. Tong
    Carlos Bustamante
    Biophysical Reviews, 2021, 13 : 885 - 888
  • [32] Helical inchworming: a novel translocation mechanism for a ring ATPase
    Tong, Alexander B.
    Bustamante, Carlos
    BIOPHYSICAL REVIEWS, 2021, 13 (06) : 885 - 888
  • [33] Prophase pathway-dependent removal of cohesin from human chromosomes requires opening of the Smc3-Scc1 gate
    Buheitel, Johannes
    Stemmann, Olaf
    EMBO JOURNAL, 2013, 32 (05): : 666 - 676
  • [34] THE MECHANISM OF THE RING-OPENING POLYMERIZATION OF LACTIDE AND GLYCOLIDE
    KOHN, FE
    VANOMMEN, JG
    FEIJEN, J
    EUROPEAN POLYMER JOURNAL, 1983, 19 (12) : 1081 - 1088
  • [35] RING-OPENING POLYMERIZATION OF PHOSPHAZENES - MECHANISM AND IDIOSYNCRASIES
    ALLCOCK, HR
    RIDING, GH
    MANNERS, I
    DODGE, JA
    MCDONNELL, GS
    DESORCIE, JL
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1990, 199 : 124 - POLY
  • [36] Ring opening mechanism of verdoheme catalyzed by heme oxygenase
    Matsui, Toshitaka
    Omori, Kohei
    Ikeda-Saito, Masao
    YAKUGAKU ZASSHI-JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, 2008, 128 : 44 - 44
  • [37] RING-OPENING POLYMERIZATION OF CYCLOTETRASILANES - MICROSTRUCTURE AND MECHANISM
    FOSSUM, E
    MATYJASZEWSKI, K
    MACROMOLECULES, 1995, 28 (05) : 1618 - 1625
  • [38] REACTION MECHANISM OF ASYMMETRICAL EPOXIDE RING OPENING BY TRIALKYLALUMINIUMS
    NAMY, JL
    BOIREAU, G
    ABENHAIM, D
    BULLETIN DE LA SOCIETE CHIMIQUE DE FRANCE, 1971, (09): : 3191 - &
  • [39] GENERALIZED RING-OPENING MECHANISM IN CYCLOOLEFIN POLYMERIZATIONS
    DALLASTA, G
    MOTRONI, G
    MOTTA, L
    JOURNAL OF POLYMER SCIENCE PART A-1-POLYMER CHEMISTRY, 1972, 10 (06): : 1601 - &
  • [40] Ring-Opening Mechanism of Lithium Bromosilacyclopropylidenoids to Silaallenes
    Azizoglu, Akin
    Yildiz, Cem B.
    ORGANOMETALLICS, 2010, 29 (24) : 6739 - 6743