Stripe-Induced High-Temperature Superconductivity in Cuprates

被引:0
|
作者
S. Sugai
Y. Takayanagi
J. Nohara
R. Shiozaki
N. Hayamizu
T. Muroi
T. Hosokawa
H. Suzuki
Y. Sone
H. Mabuchi
K. Takenaka
K. Okazaki
机构
[1] Petroleum Institute,Department of Physics, Art and Science
[2] Nagoya University,Department of Physics, Faculty of Science
[3] Nagoya University,Department of Crystalline Materials Science
[4] University of Tokyo,Department of Physics
关键词
Spin-charge stripe; Raman sum; Optical conductivity sum; Incoherent spectral function; High temperature superconductors;
D O I
暂无
中图分类号
学科分类号
摘要
The single-particle spectral function of the strongly correlated electron system is composed of a coherent peak and incoherent hills on both sides. The non-resonant electronic scattering of the incoherent spectral function becomes the same in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B_{\rm 1g}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B_{\rm 2g}$\end{document} channels and also correlates to the optical conductivity. The mid-infrared hill in the optical conductivity has the same origin as the electronic Raman susceptibility induced by the hole hopping perpendicular to the stripe. The wide-energy Raman spectra in the hole-doped and electron-doped cuprates are different, because the hole-doped cuprates are in the stripe phase while the electron-doped ones are not.
引用
收藏
页码:941 / 944
页数:3
相关论文
共 50 条
  • [21] What is strange about high-temperature superconductivity in cuprates?
    Bozovic, I.
    He, X.
    Wu, J.
    Bollinger, A. T.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2017, 31 (25):
  • [22] Paramagnons and high-temperature superconductivity in a model family of cuprates
    Lichen Wang
    Guanhong He
    Zichen Yang
    Mirian Garcia-Fernandez
    Abhishek Nag
    Kejin Zhou
    Matteo Minola
    Matthieu Le Tacon
    Bernhard Keimer
    Yingying Peng
    Yuan Li
    Nature Communications, 13
  • [23] Material-parameter dependence of superconductivity in high-temperature cuprates
    Yanagisawa, Takashi
    Miyazaki, Mitake
    Yamaji, Kunihiko
    PROCEEDINGS OF THE 26TH INTERNATIONAL SYMPOSIUM ON SUPERCONDUCTIVITY (ISS 2013), 2014, 58 : 26 - 29
  • [24] Quantitative determination of pairing interactions for high-temperature superconductivity in cuprates
    Bok, Jin Mo
    Bae, Jong Ju
    Choi, Han-Yong
    Varma, Chandra M.
    Zhang, Wentao
    He, Junfeng
    Zhang, Yuxiao
    Yu, Li
    Zhou, X. J.
    SCIENCE ADVANCES, 2016, 2 (03):
  • [25] ANOMALOUS NORMAL-STATE AND HIGH-TEMPERATURE SUPERCONDUCTIVITY IN THE CUPRATES
    WEGER, M
    JOURNAL OF LOW TEMPERATURE PHYSICS, 1994, 95 (1-2) : 131 - 144
  • [26] High-temperature superconductivity in cuprates and a Wigner lattice of electron pairs
    Krasinkova, M. V.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2006, 449 (01): : 33 - 40
  • [27] Hidden Fermionic Excitation Boosting High-Temperature Superconductivity in Cuprates
    Sakai, Shiro
    Civelli, Marcello
    Imada, Masatoshi
    PHYSICAL REVIEW LETTERS, 2016, 116 (05)
  • [28] Degenerate plaquette physics as key ingredient of high-temperature superconductivity in cuprates
    Michael Danilov
    Erik G. C. P. van Loon
    Sergey Brener
    Sergei Iskakov
    Mikhail I. Katsnelson
    Alexander I. Lichtenstein
    npj Quantum Materials, 7
  • [29] Possible High-Temperature Superconductivity in Multilayer Graphane: Can the Cuprates be Beaten?
    V. M. Loktev
    V. Turkowski
    Journal of Low Temperature Physics, 2011, 164 : 264 - 271
  • [30] Author Correction: Paramagnons and high-temperature superconductivity in a model family of cuprates
    Lichen Wang
    Guanhong He
    Zichen Yang
    Mirian Garcia-Fernandez
    Abhishek Nag
    Kejin Zhou
    Matteo Minola
    Matthieu Le Tacon
    Bernhard Keimer
    Yingying Peng
    Yuan Li
    Nature Communications, 14