In-situ flow probe for improving the performance of electrochemical stripping analysis

被引:0
|
作者
J. Wang
Jianmin Lu
Doug MacDonald
Marcio A. Augelli
机构
[1] Department of Chemistry and Biochemistry,
[2] New Mexico State University,undefined
[3] Las Cruces,undefined
[4] NM 88003,undefined
[5] USA,undefined
关键词
Trace Metal; Industrial Application; Great Promise; Flow Probe; Metal Contaminant;
D O I
暂无
中图分类号
学科分类号
摘要
Submersible flow probes, originally developed for in-situ electrochemical monitoring of trace metal contaminants, are used for minimizing common problems in stripping analysis, such as overlapping signals, intermetallic effects or ohmic distortions. These problems are alleviated via an internal delivery of an appropriate solution, containing a masking ligand, a third element, or a conductive matrix. Such attention to common problems, via in-situ manipulations of the collected metal, holds great promise for environmental and industrial applications. The coupling of fluid manipulations with the stripping sensor represents the first step towards the construction of miniaturised stripping analysers on a cable.
引用
收藏
页码:28 / 31
页数:3
相关论文
共 50 条
  • [41] Understanding electrochemical capacitors with in-situ techniques
    Pal, Bhupender
    Yasin, Amina
    Kaur, Rupinder
    Tebyetekerwa, Mike
    Zabihi, Fatemeh
    Yang, Shengyuan
    Yang, Chun-Chen
    Sofer, Zdenek
    Jose, Rajan
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 149
  • [42] Understanding electrochemical capacitors with in-situ techniques
    Pal, Bhupender
    Yasin, Amina
    Kaur, Rupinder
    Tebyetekerwa, Mike
    Zabihi, Fatemeh
    Yang, Shengyuan
    Yang, Chun-Chen
    Sofer, Zděnek
    Jose, Rajan
    Renewable and Sustainable Energy Reviews, 2021, 149
  • [43] In-Situ Encapsulation of Nickel Particles in Electrospun Carbon Nanofibers and the Resultant Electrochemical Performance
    Ji, Liwen
    Lin, Zhan
    Medford, Andrew J.
    Zhang, Xiangwu
    CHEMISTRY-A EUROPEAN JOURNAL, 2009, 15 (41) : 10718 - 10722
  • [44] Electrochemical In-Situ Micropatterning of Cells and Polymers
    Nishizawa, M.
    Kaji, H.
    Sekine, S.
    13TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, VOLS 1-3, 2009, 23 (1-3): : 2173 - 2176
  • [45] Improving the structural reversibility of LiNiO2 by incorporation of Cu, an electrochemical and in-situ XRD study
    Martinez-Cruz, Miguel A.
    Ramos-Sanchez, Guadalupe
    Oliver-Tolentino, Miguel
    Pfeiffer, Heriberto
    Gonzalez, Ignacio
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 923
  • [46] Energy requirements for the in-situ recovery of biobutanol via gas stripping
    Naidoo, Muven
    Tai, Siew Leng
    Harrison, Susan Therese Largier
    BIOCHEMICAL ENGINEERING JOURNAL, 2018, 139 : 74 - 84
  • [47] Improving the structural reversibility of LiNiO2 by incorporation of Cu, an electrochemical and in-situ XRD study
    Martinez-Cruz, Miguel A.
    Ramos-Sanchez, Guadalupe
    Oliver-Tolentino, Miguel
    Pfeiffer, Heriberto
    Gonzalez, Ignacio
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 923
  • [48] ANALYSIS OF HEAT FLOW DATA - IN-SITU THERMAL CONDUCTIVITY MEASUREMENTS
    BECK, AE
    ANGLIN, FM
    SASS, JH
    CANADIAN JOURNAL OF EARTH SCIENCES, 1971, 8 (01) : 1 - +
  • [49] SNOW PROBE FOR IN-SITU DETERMINATION OF WETNESS AND DENSITY
    KENDRA, JR
    ULABY, FT
    SARABANDI, K
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1994, 32 (06): : 1152 - 1159
  • [50] Wideband In-Situ Soil Permittivity Coaxial Probe
    Chen, Ming
    Chen, Chi-Chih
    2011 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (APSURSI), 2011, : 346 - 349