Linearization of holomorphic germs with quasi-Brjuno fixed points

被引:0
|
作者
Jasmin Raissy
机构
[1] Università di Pisa,Dipartimento di Matematica
来源
Mathematische Zeitschrift | 2010年 / 264卷
关键词
Complex Manifold; Invariant Manifold; Normal Bundle; Formal Power Series; Linearization Result;
D O I
暂无
中图分类号
学科分类号
摘要
Let f be a germ of holomorphic diffeomorphism of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}^{n}}$$\end{document} fixing the origin O, with d fO diagonalizable. We prove that, under certain arithmetic conditions on the eigenvalues of d fO and some restrictions on the resonances, f is locally holomorphically linearizable if and only if there exists a particular f -invariant complex manifold. Most of the classical linearization results can be obtained as corollaries of our result.
引用
收藏
页码:881 / 900
页数:19
相关论文
共 50 条
  • [21] The dynamics near quasi-parabolic fixed points of holomorphic diffeomorphisms in C2
    Bracci, F
    Molino, L
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (03) : 671 - 686
  • [22] FIXED-POINTS OF A LIMIT OF HOLOMORPHIC MAPPINGS
    VIGUE, JP
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 1986, 110 (04): : 411 - 424
  • [23] APPROXIMATIONS OF FIXED-POINTS OF HOLOMORPHIC MAPPINGS
    KUCZUMOW, T
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1987, 1A (02): : 217 - 220
  • [24] On fixed points and determining sets for holomorphic automorphisms
    Fridman, BL
    Kim, KT
    Krantz, SG
    Ma, D
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2002, 50 (03) : 507 - 515
  • [25] SYMPLECTIC FIXED-POINTS AND HOLOMORPHIC SPHERES
    FLOER, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 120 (04) : 575 - 611
  • [26] FIXED POINTS OF HOLOMORPHIC TRANSFORMATIONS OF OPERATOR BALLS
    Ostrovskii, M. I.
    Shulman, V. S.
    Turowska, L.
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2011, 62 (01): : 173 - 187
  • [27] ON THE SET OF FIXED-POINTS OF A HOLOMORPHIC MAP
    ABDALLA, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 302 (12): : 451 - 454
  • [28] Invariant distances and fixed points of holomorphic maps
    Vigue, Jean-Pierre
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (01): : 12 - 18
  • [29] ASYMPTOTICALLY CONFORMAL FIXED POINTS AND HOLOMORPHIC MOTIONS
    Jiang, Yunping
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2009, 34 (01) : 27 - 46
  • [30] Quasi-linearization of parameter-depending germs of vector fields
    Naudot, Vincent
    Yang, Jiazhong
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2013, 28 (02): : 173 - 186