Periodicity and attractivity for a rational recursive sequence

被引:6
|
作者
Zhang L. [1 ]
Zhang G. [1 ]
Liu H. [1 ]
机构
[1] Department of Mathematics, Qingdao Polytechnic University, Qingdao
关键词
Attractivity; Basin; Periodicity; Rational recursive sequence;
D O I
10.1007/BF02935798
中图分类号
学科分类号
摘要
In this paper, the existence of periodic positive solution and the attractivity are investigated for the rational recursive sequence zn+i = (A + axn-k)/(b + xn-l), where A, a and b are real numbers, k and l are nonnegative integer numbers. © 2005 Korean Society for Computational & Applied Mathematics and Korean SIGCAM.
引用
收藏
页码:191 / 201
页数:10
相关论文
共 50 条
  • [31] The Fibonacci sequence modulo π, chaos and some rational recursive equations
    Rhouma, MB
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 310 (02) : 506 - 517
  • [32] Periodicity and Global Attractivity of Difference Equation of Higher Order
    Ibrahim, T. F.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 16 (03) : 552 - 564
  • [33] The global attractivity of the rational difference equation
    Berenhaut, Kenneth S.
    Foley, John D.
    Stevic, Stevo
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (04) : 1133 - 1140
  • [34] Global Attractivity of A Rational Difference Equation
    Hu, Zhenggao
    Zeng, Xiaoyun
    Shi, Bao
    PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 972 - 975
  • [35] Periodicity and attractivity of a nonlinear higher order difference equation
    Zhang, G
    Zhang, LJ
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 161 (02) : 395 - 401
  • [36] ON THE PERIODICITY OF CERTAIN RECURSIVE SEQUENCES
    McGuire, Trevor
    FIBONACCI QUARTERLY, 2008, 46-47 (04): : 350 - 355
  • [37] The Behavior and Structures of Solution of Fifth-Order Rational Recursive Sequence
    Elsayed, Elsayed M.
    Aloufi, Badriah S.
    Moaaz, Osama
    SYMMETRY-BASEL, 2022, 14 (04):
  • [38] Attractivity of the recursive sequence χn+1 = (α - βχn)F(χn-1,...,χn-k)
    Hamza, Alaa E.
    Barbary, S. G.
    MATHEMATICAL AND COMPUTER MODELLING, 2008, 48 (11-12) : 1744 - 1749
  • [39] On the rational recursive sequence yn = A + yn-1yn-m for small A
    Berenhaut, Kenneth S.
    Donadio, Katherine M.
    Foley, John D.
    APPLIED MATHEMATICS LETTERS, 2008, 21 (09) : 906 - 909
  • [40] ON THE RATIONAL RECURSIVE SEQUENCE x(n+1) = alpha x(n)
    Zayed, E. M. E.
    El-Moneam, M. A.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2006, 22 (1-2) : 247 - 262