The study on the chaotic motion of a nonlinear dynamic system

被引:0
|
作者
Qiang H. [1 ]
Shanyuan Z. [2 ]
Guitong Y. [2 ]
机构
[1] Department of Mechanics, College of Traffic and Communications, South China University of Technology
[2] Taiyuan University of Technology
基金
中国国家自然科学基金;
关键词
Chaos; Melnikov method; Phase portrait; Poincaré; map; Time-displacement diagram;
D O I
10.1007/BF02452482
中图分类号
学科分类号
摘要
In this paper, the system of the forced vibration T̈ - λ1 T + λ2T2 + λ3T3 = ε(gcosωt - ε′Ṫ) is discussed, which contains square and cubic items. The critical condition that the system enters chaotic states is given by the Melnikov method. By Poincaré map, phase portrait and time-displacement history diagram, whether the chaos occurs is determined.
引用
收藏
页码:830 / 836
页数:6
相关论文
共 50 条
  • [21] Study on the chaotic phenomena of nonlinear vibration isolation system
    Liu Shuyong
    Zhu Shijian
    Yu Xiang
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 194 - 198
  • [22] Chaotic motion in the Solar System
    Lissauer, JJ
    REVIEWS OF MODERN PHYSICS, 1999, 71 (03) : 835 - 845
  • [23] Chaotic motion of a nonlinear near resonance centrifuge
    Guo F.
    Li N.
    Noise and Vibration Worldwide, 2020, 51 (11): : 189 - 194
  • [24] Neural network control for nonlinear chaotic motion
    Tan, W
    Wang, YN
    Liu, ZR
    Zhou, SW
    ACTA PHYSICA SINICA, 2002, 51 (11) : 2463 - 2466
  • [25] On suppression of chaotic motion of a nonlinear MEMS oscillator
    Angelo M. Tusset
    Jose M. Balthazar
    Rodrigo T. Rocha
    Mauricio A. Ribeiro
    Wagner B. Lenz
    Nonlinear Dynamics, 2020, 99 : 537 - 557
  • [26] CHAOTIC MOTION OF A WEAKLY NONLINEAR, MODULATED OSCILLATOR
    MILES, J
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1984, 81 (12): : 3919 - 3923
  • [27] Chaotic motion of a nonlinear thermoelastic elliptic plate
    Qiang H.
    Nianmei Z.
    Guitong Y.
    Applied Mathematics and Mechanics, 1999, 20 (9) : 960 - 966
  • [28] Analysis of chaotic motion in nonlinear dynamical systems
    Yi Qi Yi Biao Xue Bao, 6 (579-583, 605):
  • [29] PERIOD DOUBLING AND CHAOTIC MOTION IN A NONLINEAR OSCILLATOR
    SZEMPLINSKASTUPNICKA, W
    BAJKOWSKI, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1987, 67 (04): : T153 - T154
  • [30] Transition to chaotic motion in coupled nonlinear oscillators
    Gulyaev, VI
    Zavrazhina, TV
    INTERNATIONAL APPLIED MECHANICS, 1996, 32 (11) : 893 - 899