The study on the chaotic motion of a nonlinear dynamic system

被引:0
|
作者
Qiang H. [1 ]
Shanyuan Z. [2 ]
Guitong Y. [2 ]
机构
[1] Department of Mechanics, College of Traffic and Communications, South China University of Technology
[2] Taiyuan University of Technology
基金
中国国家自然科学基金;
关键词
Chaos; Melnikov method; Phase portrait; Poincaré; map; Time-displacement diagram;
D O I
10.1007/BF02452482
中图分类号
学科分类号
摘要
In this paper, the system of the forced vibration T̈ - λ1 T + λ2T2 + λ3T3 = ε(gcosωt - ε′Ṫ) is discussed, which contains square and cubic items. The critical condition that the system enters chaotic states is given by the Melnikov method. By Poincaré map, phase portrait and time-displacement history diagram, whether the chaos occurs is determined.
引用
收藏
页码:830 / 836
页数:6
相关论文
共 50 条
  • [1] THE STUDY ON THE CHAOTIC MOTION OF A NONLINEAR DYNAMIC SYSTEM
    韩强
    张善元
    杨桂通
    Applied Mathematics and Mechanics(English Edition), 1999, (08) : 9 - 15
  • [2] The study on the chaotic motion of a nonlinear dynamic system
    Han, Q
    Zhang, SY
    Yang, GT
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 1999, 20 (08) : 830 - 836
  • [3] On chaotic motion of some stochastic nonlinear dynamic system
    Huang, Dong-Wei
    Gao, Qin
    Wang, Hong-Li
    Feng, Han-Feng
    Zhu, Zhi-Wen
    CHAOS SOLITONS & FRACTALS, 2007, 31 (01) : 242 - 246
  • [4] Analysis on the chaotic motion of a stochastic nonlinear dynamic system
    Ma, Junhai
    Gao, Qin
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (14) : 3266 - 3272
  • [5] Chaotic motion of some relative rotation nonlinear dynamic system
    Shi, Pei-Ming
    Liu, Bin
    Hou, Dong-Xiao
    Wuli Xuebao/Acta Physica Sinica, 2008, 57 (03): : 1321 - 1328
  • [6] Chaotic motion of some relative rotation nonlinear dynamic system
    Shi Pei-Ming
    Liu Bin
    Hou Dong-Xiao
    ACTA PHYSICA SINICA, 2008, 57 (03) : 1321 - 1328
  • [7] Chaotic Motion of Nonlinear System
    Aslanov, V. S.
    Ivanov, B. V.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2008, 8 (04): : 38 - 43
  • [8] NONLINEAR DYNAMIC ECONOMICS AND CHAOTIC MOTION - LORENZ,HW
    WOECKENER, B
    JAHRBUCHER FUR NATIONALOKONOMIE UND STATISTIK, 1991, 208 (03): : 331 - 334
  • [9] NONLINEAR DYNAMIC ECONOMICS AND CHAOTIC MOTION - LORENZ,HW
    STROBELE, WJ
    KYKLOS, 1991, 44 (03) : 482 - 484
  • [10] NONLINEAR DYNAMIC ECONOMICS AND CHAOTIC MOTION - LORENZ,HW
    FURTH, D
    ECONOMIST, 1990, 138 (03): : 371 - 372