The method of p-harmonic approximation and optimal interior partial regularity for energy minimizing p-harmonic maps under the controllable growth condition

被引:0
|
作者
Shu-hong Chen
Zhong Tan
机构
[1] Xiamen University,School of Mathematical Science
来源
关键词
-harmonic approximation; controllable growth condition; regularity; 35J70; 35J60; 35D10; 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are concerned with the partial regularity for the weak solutions of energy minimizing p-harmonic maps under the controllable growth condition. We get the interior partial regularity by the p-harmonic approximation method together with the technique used to get the decay estimation on some Degenerate elliptic equations and the obstacle problem by Tan and Yan. In particular, we directly get the optimal regularity.
引用
收藏
页码:105 / 115
页数:10
相关论文
共 50 条
  • [21] Minimizing p-harmonic maps at a free boundary.
    Frank, D
    Gastel, A
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1998, 1B (02): : 391 - 405
  • [22] On regularity theory for n/p-harmonic maps into manifolds
    Da Lio, Francesca
    Schikorra, Armin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 165 : 182 - 197
  • [23] Regularity and uniqueness of p-harmonic maps with small range
    Fardoun, Ali
    Regbaoui, Rachid
    GEOMETRIAE DEDICATA, 2013, 164 (01) : 259 - 271
  • [24] REGULARITY ISSUES FOR COSSERAT CONTINUA AND p-HARMONIC MAPS
    Gastel, Andreas
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (06) : 4287 - 4310
  • [25] Regularity for P-Harmonic Type Systems with the Gradients below the Controllable Growth
    Shen Zhou ZHENG Shu Le ZHAO Department of Mathematics
    Acta Mathematica Sinica(English Series), 2006, 22 (06) : 1757 - 1766
  • [26] Regularity and uniqueness of p-harmonic maps with small range
    Ali Fardoun
    Rachid Regbaoui
    Geometriae Dedicata, 2013, 164 : 259 - 271
  • [27] On equivariant p-harmonic maps
    Fardoun, A
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (01): : 25 - 72
  • [28] On the Generalized of p-Harmonic Maps
    Merdji, Bouchra
    Cherif, Ahmed Mohammed
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2022, 15 (02): : 183 - 191
  • [29] A REMARK ON P-HARMONIC MAPS
    NAKAUCHI, N
    TAKAKUWA, S
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 25 (02) : 169 - 185
  • [30] p-harmonic maps with applications
    Wei, SW
    NONLINEAR EVOLUTION EQUATIONS AND DYNAMICAL SYSTEMS, 2003, : 91 - 108