Genome-wide association study identifies loci and candidate genes for grain micronutrients and quality traits in wheat (Triticum aestivum L.)

被引:0
|
作者
Nagenahalli Dharmegowda Rathan
Hari Krishna
Ranjith Kumar Ellur
Deepmala Sehgal
Velu Govindan
Arvind Kumar Ahlawat
Gopalareddy Krishnappa
Jai Prakash Jaiswal
Jang Bahadur Singh
Saiprasad SV
Divya Ambati
Sumit Kumar Singh
Kriti Bajpai
Anju Mahendru-Singh
机构
[1] Indian Agricultural Research Institute,
[2] International Maize and Wheat Improvement Center,undefined
[3] Indian Institute of Wheat and Barley Research,undefined
[4] Govind Ballabh Pant University of Agriculture and Technology,undefined
[5] Indian Agricultural Research Institute,undefined
[6] Regional Station,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Malnutrition due to micronutrients and protein deficiency is recognized among the major global health issues. Genetic biofortification of wheat is a cost-effective and sustainable strategy to mitigate the global micronutrient and protein malnutrition. Genomic regions governing grain zinc concentration (GZnC), grain iron concentration (GFeC), grain protein content (GPC), test weight (TW), and thousand kernel weight (TKW) were investigated in a set of 184 diverse bread wheat genotypes through genome-wide association study (GWAS). The GWAS panel was genotyped using Breeders' 35 K Axiom Array and phenotyped in three different environments during 2019–2020. A total of 55 marker-trait associations (MTAs) were identified representing all three sub-genomes of wheat. The highest number of MTAs were identified for GPC (23), followed by TKW (15), TW (11), GFeC (4), and GZnC (2). Further, a stable SNP was identified for TKW, and also pleiotropic regions were identified for GPC and TKW. In silico analysis revealed important putative candidate genes underlying the identified genomic regions such as F-box-like domain superfamily, Zinc finger CCCH-type proteins, Serine-threonine/tyrosine-protein kinase, Histone deacetylase domain superfamily, and SANT/Myb domain superfamily proteins, etc. The identified novel MTAs will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection.
引用
收藏
相关论文
共 50 条
  • [21] Genome-wide association mapping of root system architecture traits in common wheat (Triticum aestivum L.)
    Peng Liu
    Yirong Jin
    Jindong Liu
    Caiyun Liu
    Hongping Yao
    Fuyi Luo
    Zhihui Guo
    Xianchun Xia
    Zhonghu He
    Euphytica, 2019, 215
  • [22] Genome-wide association mapping of root system architecture traits in common wheat (Triticum aestivum L.)
    Liu, Peng
    Jin, Yirong
    Liu, Jindong
    Liu, Caiyun
    Yao, Hongping
    Luo, Fuyi
    Guo, Zhihui
    Xia, Xianchun
    He, Zhonghu
    EUPHYTICA, 2019, 215 (07)
  • [23] Genome-wide association study and quantitative trait loci mapping of seed dormancy in common wheat (Triticum aestivum L.)
    Jinghong Zuo
    Chih-Ta Lin
    Hong Cao
    Fengying Chen
    Yongxiu Liu
    Jindong Liu
    Planta, 2019, 250 : 187 - 198
  • [24] Genome-wide association study and quantitative trait loci mapping of seed dormancy in common wheat (Triticum aestivum L.)
    Zuo, Jinghong
    Lin, Chih-Ta
    Cao, Hong
    Chen, Fengying
    Liu, Yongxiu
    Liu, Jindong
    PLANTA, 2019, 250 (01) : 187 - 198
  • [25] Genome-wide association for growth habit in bread wheat (Triticum aestivum L.)
    Gomez-Espejo, Ana L.
    Sansaloni, Carolina P.
    Burgueno, Juan
    Toledo, Fernando H.
    Humberto Reyes-Valdes, M.
    ECOSISTEMAS Y RECURSOS AGROPECUARIOS, 2021, 8 (02):
  • [26] Genome-wide association study of lipase and esterase in wholegrain wheat flour (Triticum aestivum L.)
    Wei, Chun Yue
    Yates, Steven
    Zhu, Dan
    Hund, Andreas
    Studer, Bruno
    Nystrom, Laura
    PLOS BIOLOGY, 2023, 21 (03)
  • [27] Genome-wide association study of lipase and esterase in wholegrain wheat flour (Triticum aestivum L.)
    Wei, Chun Yue
    Yates, Steven
    Zhu, Dan
    Hund, Andreas
    Studer, Bruno
    Nystrom, Laura
    PLOS ONE, 2023, 18 (03):
  • [28] Identification of Genetic Loci and Candidate Genes Related to the Sensory and Textural Properties of Chinese White Noodles by Genome-wide Association Study Using Common Wheat (Triticum aestivum L.)
    Li, Wenshu
    Wang, Guanying
    Fang, Wenqi
    Guo, Xin
    Liu, Yanli
    Yang, Xiaojie
    Chen, Guangfeng
    Tian, Jichun
    Ding, Hanfeng
    Wang, Yanxun
    Deng, Zhiying
    PLANT MOLECULAR BIOLOGY REPORTER, 2022, 40 (03) : 516 - 529
  • [29] Identification of Genetic Loci and Candidate Genes Related to the Sensory and Textural Properties of Chinese White Noodles by Genome-wide Association Study Using Common Wheat (Triticum aestivum L.)
    Wenshu Li
    Guanying Wang
    Wenqi Fang
    Xin Guo
    Yanli Liu
    Xiaojie Yang
    Guangfeng Chen
    Jichun Tian
    Hanfeng Ding
    Yanxun Wang
    Zhiying Deng
    Plant Molecular Biology Reporter, 2022, 40 : 516 - 529
  • [30] Genome-wide association study identifies QTL and candidate genes for grain size and weight in a Triticum turgidum collection
    Mangini, G.
    Nigro, D.
    Curci, P. L.
    Simeone, R.
    Blanco, A.
    PLANT GENOME, 2025, 18 (01):