On Finite Groups with Restrictions on Centralizers

被引:0
|
作者
V. A. Antonov
I. A. Tyurina
A. P. Cheskidov
机构
[1] South-Ural State University,
[2] Indiana University,undefined
来源
Mathematical Notes | 2002年 / 71卷
关键词
finite group; centralizer; non-Abelian group; nilpotent group; Sylow subgroup; Schur multiplier; Frobenius group;
D O I
暂无
中图分类号
学科分类号
摘要
Denote by w(n) the number of factors in a representation of a positive integer n as a product of primes. If H is a subgroup of a finite group G, then we set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$w(H) = w(|H|)$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$v(G) = {\text{max\{ }}w(C(g))|g \in G\backslash Z(G)\} $$ \end{document}. In the present paper we present the complete description of groups with nontrivial center that satisfy the condition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$v(G) = 4$$ \end{document}.
引用
收藏
页码:443 / 454
页数:11
相关论文
共 50 条
  • [41] Centralizers in pseudo-finite groups
    Hempel, Nadja
    Palacin, Daniel
    JOURNAL OF ALGEBRA, 2021, 569 : 258 - 275
  • [42] REPRESENTATION OF FINITE-GROUPS AS CENTRALIZERS IN SYMMETRICAL GROUPS
    SCHNABEL, R
    ARCHIV DER MATHEMATIK, 1980, 35 (1-2) : 92 - 94
  • [43] Centralizers of subgroups in simple locally finite groups
    Ersoy, Kivanc
    Kuzucuoglu, Mahmut
    JOURNAL OF GROUP THEORY, 2012, 15 (01) : 9 - 22
  • [44] A note on element centralizers in finite Coxeter groups
    Konvalinka, Matjaz
    Pfeiffer, Goetz
    Roever, Claas E.
    JOURNAL OF GROUP THEORY, 2011, 14 (05) : 727 - 745
  • [45] LARGE CENTRALIZERS IN FINITE SOLVABLE-GROUPS
    BERTRAM, EA
    ISRAEL JOURNAL OF MATHEMATICS, 1984, 47 (04) : 335 - 344
  • [46] FINITE GROUPS HAVE EVEN MORE CENTRALIZERS
    Amri, S. M. Jafarian
    Amiri, M.
    Madadi, H.
    Rostami, H.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (06): : 1423 - 1431
  • [47] A finiteness condition on centralizers in locally finite groups
    Gustavo A. Fernández-Alcober
    Leire Legarreta
    Antonio Tortora
    Maria Tota
    Monatshefte für Mathematik, 2017, 183 : 241 - 250
  • [48] Finite groups determined by the number of element centralizers
    Amiri, Seyyed Majid Jafarian
    Amiri, Mohsen
    Rostami, Hojjat
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (09) : 3792 - 3797
  • [49] On finite groups admitting automorphisms with nilpotent centralizers
    de Melo, Emerson
    Caldeira, Jhone
    JOURNAL OF ALGEBRA, 2018, 493 : 185 - 193
  • [50] FINITE SOLUBLE GROUPS HAVE LARGE CENTRALIZERS
    COSSEY, J
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1987, 35 (02) : 291 - 298