Genome-enabled prediction of quantitative traits in chickens using genomic annotation

被引:0
|
作者
Gota Morota
Rostam Abdollahi-Arpanahi
Andreas Kranis
Daniel Gianola
机构
[1] University of Wisconsin-Madison,Department of Animal Sciences
[2] University College of Agriculture and Natural Resources,Department of Animal Science
[3] Aviagen,The Roslin Institute and Royal (Dick) School of Veterinary Studies
[4] University of Edinburgh,Department of Biostatistics and Medical Informatics
[5] University of Wisconsin-Madison,Department of Dairy Science
[6] University of Wisconsin-Madison,undefined
来源
BMC Genomics | / 15卷
关键词
Whole-genome prediction; Annotation; SNP; Chicken;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Differential contribution of genomic regions to marked genetic variation and prediction of quantitative traits in broiler chickens
    Abdollahi-Arpanahi, Rostam
    Morota, Gota
    Valente, Bruno D.
    Kranis, Andreas
    Rosa, Guilherme J. M.
    Gianola, Daniel
    [J]. GENETICS SELECTION EVOLUTION, 2016, 48
  • [32] Differential contribution of genomic regions to marked genetic variation and prediction of quantitative traits in broiler chickens
    Rostam Abdollahi-Arpanahi
    Gota Morota
    Bruno D. Valente
    Andreas Kranis
    Guilherme J. M. Rosa
    Daniel Gianola
    [J]. Genetics Selection Evolution, 48
  • [33] Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle
    Anita Ehret
    David Hochstuhl
    Daniel Gianola
    Georg Thaller
    [J]. Genetics Selection Evolution, 47
  • [34] The Causal Meaning of Genomic Predictors and How It Affects Construction and Comparison of Genome-Enabled Selection Models
    Valente, Bruno D.
    Morota, Gota
    Penagaricano, Francisco
    Gianola, Daniel
    Weigel, Kent
    Rosa, Guilherme J. M.
    [J]. GENETICS, 2015, 200 (02) : 483 - +
  • [35] Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle
    Ehret, Anita
    Hochstuhl, David
    Gianola, Daniel
    Thaller, Georg
    [J]. GENETICS SELECTION EVOLUTION, 2015, 47
  • [36] Subset selection of markers for the genome-enabled prediction of genetic values using radial basis function neural networks
    Sant'Anna, Isabela de Castro
    Silva, Gabi Nunes
    Nascimento, Moyses
    Cruz, Cosme Damiao
    [J]. ACTA SCIENTIARUM-AGRONOMY, 2021, 43 : 1 - 10
  • [37] Bootstrap study of genome-enabled prediction reliabilities using haplotype blocks across Nordic Red cattle breeds
    Cuyabano, B. C. D.
    Su, G.
    Rosa, G. J. M.
    Lund, M. S.
    Gianola, D.
    [J]. JOURNAL OF DAIRY SCIENCE, 2015, 98 (10) : 7351 - 7363
  • [38] White Lupin Adaptation to Moderately Calcareous Soils: Phenotypic Variation and Genome-Enabled Prediction
    Annicchiarico, Paolo
    de Buck, Abco J. J.
    Vlachostergios, Dimitrios N. N.
    Heupink, Dennis
    Koskosidis, Avraam
    Nazzicari, Nelson
    Crosta, Margherita
    [J]. PLANTS-BASEL, 2023, 12 (05):
  • [39] Cross-Validation Without Doing Cross-Validation in Genome-Enabled Prediction
    Gianola, Daniel
    Schoen, Chris-Carolin
    [J]. G3-GENES GENOMES GENETICS, 2016, 6 (10): : 3107 - 3128
  • [40] Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments
    Kumar, Satish
    Molloy, Claire
    Munoz, Patricio
    Daetwyler, Hans
    Chagne, David
    Volz, Richard
    [J]. G3-GENES GENOMES GENETICS, 2015, 5 (12): : 2711 - 2718