Degenerate flag varieties of type A: Frobenius splitting and BW theorem

被引:0
|
作者
Evgeny Feigin
Michael Finkelberg
机构
[1] National Research University Higher School of Economics,Department of Mathematics
[2] Lebedev Physics Institute,Tamm Theory Division
[3] IMU,undefined
[4] IITP,undefined
[5] and National Research University Higher School of Economics,undefined
来源
Mathematische Zeitschrift | 2013年 / 275卷
关键词
Complete Intersection; Cell Decomposition; Character Formula; Flag Variety; Abelian Ideal;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal F ^a_\lambda $$\end{document} be the PBW degeneration of the flag varieties of type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{n-1}$$\end{document}. These varieties are singular and are acted upon with the degenerate Lie group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL_n^a$$\end{document}. We prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal F ^a_\lambda $$\end{document} have rational singularities, are normal and locally complete intersections, and construct a desingularization \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\lambda $$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal F ^a_\lambda $$\end{document}. The varieties \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\lambda $$\end{document} can be viewed as towers of successive \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{P }^1$$\end{document}-fibrations, thus providing an analogue of the classical Bott–Samelson–Demazure–Hansen desingularization. We prove that the varieties \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\lambda $$\end{document} are Frobenius split. This gives us Frobenius splitting for the degenerate flag varieties and allows to prove the Borel–Weil type theorem for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal F ^a_\lambda $$\end{document}. Using the Atiyah–Bott–Lefschetz formula for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\lambda $$\end{document}, we compute the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-characters of the highest weight \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak sl _n$$\end{document}-modules.
引用
收藏
页码:55 / 77
页数:22
相关论文
共 50 条
  • [31] Frobenius Splitting of Thick Flag Manifolds of Kac-Moody Algebras
    Kato, Syu
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (17) : 5401 - 5427
  • [32] Degenerate flag varieties: moment graphs and Schröder numbers
    Giovanni Cerulli Irelli
    Evgeny Feigin
    Markus Reineke
    Journal of Algebraic Combinatorics, 2013, 38 : 159 - 189
  • [33] The Hard Lefschetz Theorem in Positive Characteristic for the Flag Varieties
    Patimo, Leonardo
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (18) : 5562 - 5582
  • [34] DEGENERATE SCHUBERT VARIETIES IN TYPE A
    Chirivi, Rocco
    Fang, Xin
    Fourier, Ghislain
    TRANSFORMATION GROUPS, 2021, 26 (04) : 1189 - 1215
  • [35] DEGENERATE SCHUBERT VARIETIES IN TYPE A
    ROCCO CHIRIVÌ
    XIN FANG
    GHISLAIN FOURIER
    Transformation Groups, 2021, 26 : 1189 - 1215
  • [36] Affine flag varieties of type D
    Chen, Quanyong
    Fan, Zhaobing
    Wang, Qi
    JOURNAL OF ALGEBRA, 2025, 674 : 257 - 275
  • [37] Multiple flag varieties of finite type
    Magyar, P
    Weyman, J
    Zelevinsky, A
    ADVANCES IN MATHEMATICS, 1999, 141 (01) : 97 - 118
  • [38] SYMPLECTIC PBW DEGENERATE FLAG VARIETIES; PBW TABLEAUX AND DEFINING EQUATIONS
    GEORGE BALLA
    Transformation Groups, 2023, 28 : 505 - 540
  • [39] SYMPLECTIC PBW DEGENERATE FLAG VARIETIES; PBW TABLEAUX AND DEFINING EQUATIONS
    Balla, George
    TRANSFORMATION GROUPS, 2023, 28 (02) : 505 - 540
  • [40] Dually Degenerate Varieties and the Generalization of a Theorem of Griffiths–Harris
    Maks A. Akivis
    Vladislav V. Goldberg
    Acta Applicandae Mathematica, 2005, 86 : 249 - 265