An updated PREDICT breast cancer prognostication and treatment benefit prediction model with independent validation

被引:0
|
作者
Francisco J. Candido dos Reis
Gordon C. Wishart
Ed M. Dicks
David Greenberg
Jem Rashbass
Marjanka K. Schmidt
Alexandra J. van den Broek
Ian O. Ellis
Andrew Green
Emad Rakha
Tom Maishman
Diana M. Eccles
Paul D. P. Pharoah
机构
[1] University of Sao Paulo,Department of Gynaecology and Obstetrics, Ribeirao Preto Medical School
[2] Anglia Ruskin University,Faculty of Medical Science
[3] University of Cambridge,Department of Oncology
[4] Public Health England,National Cancer Registration and Analysis Service
[5] Netherlands Cancer Institute,Division of Molecular Pathology
[6] Netherlands Cancer Institute,Division of Psychosocial Research and Epidemiology
[7] University of Nottingham and Nottingham University Hospitals NHS Trust,Division of Cancer and Stem Cells, School of Medicine
[8] City Hospital,Cancer Sciences Academic Unit and Southampton Clinical Trials Unit, Faculty of Medicine
[9] University of Southampton and University Hospital Southampton Foundation Trust,undefined
来源
关键词
Breast cancer; Prognosis;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Validation of the online prediction model CancerMath in the Dutch breast cancer population
    van Maaren, Marissa Corine
    Hoveling, Liza
    Hueting, Tom
    Strobbe, Luc J. A.
    Hendriks, Mathijs P.
    Sonke, Gabe S.
    Siesling, Sabine
    CANCER RESEARCH, 2020, 80 (04)
  • [32] INDEPENDENT VALIDATION OF A CARDIORESPIRATORY FITNESS PREDICTION MODEL
    Kachur, Sergey
    Arena, Ross
    Morera, Rebecca
    DeSchutter, Alban
    Milani, Richard
    Lavie, Carl
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2018, 71 (11) : 1878 - 1878
  • [33] Validity of the prognostication tool PREDICT version 2.2 in Japanese breast cancer patients
    Zaguirre, Karen
    Kai, Masaya
    Kubo, Makoto
    Yamada, Mai
    Kurata, Kanako
    Kawaji, Hitomi
    Kaneshiro, Kazuhisa
    Harada, Yurina
    Hayashi, Saori
    Shimazaki, Akiko
    Morisaki, Takafumi
    Mori, Hitomi
    Oda, Yoshinao
    Chen, Sanmei
    Moriyama, Taiki
    Shimizu, Shuji
    Nakamura, Masafumi
    CANCER MEDICINE, 2021, 10 (05): : 1605 - 1613
  • [34] COMPARISON OF PREDICT AND ADJUVANT! PROGNOSTICATION MODELS FOR EARLY BREAST CANCER IN A UK DATASET
    Wishart, G. C.
    Campbell, Helen
    Azzato, E. M.
    Greenberg, D. C.
    Rashbass, J.
    Caldas, C.
    Pharoah, P. D. P.
    EJC SUPPLEMENTS, 2010, 8 (06): : 26 - 26
  • [35] Development of a prediction model for ctDNA detection (Cir-Predict) in breast cancer
    Nakauchi, Chiaki
    Masunaga, Nanae
    Kagara, Naofumi
    Oshiro, Chiya
    Shimoda, Masafumi
    Shimazu, Kenzo
    BREAST CANCER RESEARCH AND TREATMENT, 2025, : 331 - 339
  • [36] Validation of the online prediction tool PREDICT v. 2.0 in the Dutch breast cancer population
    van Maaren, M. C.
    van Steenbeek, C. D.
    Pharoah, P. D. P.
    Witteveen, A.
    Sonke, G. S.
    Strobbe, L. J. A.
    Poortmans, P. M. P.
    Siesling, S.
    EUROPEAN JOURNAL OF CANCER, 2017, 86 : 364 - 372
  • [37] Independent validation of simbiosys tumorscope to predict response to neoadjuvant chemotherapy (NACT) in early breast cancer (EBC).
    He, Gong
    Howard, Frederick
    Pandey, Tushar
    Abe, Hiroyuki
    Nanda, Rita
    JOURNAL OF CLINICAL ONCOLOGY, 2021, 39 (15)
  • [38] Do we need biomarkers to predict the benefit of adding adjuvant taxanes for treatment of breast cancer?
    José Pérez-García
    Javier Cortés
    Breast Cancer Research, 14
  • [39] Do we need biomarkers to predict the benefit of adding adjuvant taxanes for treatment of breast cancer?
    Perez-Garcia, Jose
    Cortes, Javier
    BREAST CANCER RESEARCH, 2012, 14 (01):
  • [40] Independent Validation of the BRENDA-Score Breast Cancer Prognosis Prediction Tool In Chinese Patients
    Ma, Shao
    Liu, Yunxia
    Gao, Peng
    Ma, Rong
    CLINICAL BREAST CANCER, 2024, 24 (05) : e389 - e395