Excitonic Phase Transition in the Extended Three-Dimensional Falicov–Kimball Model

被引:0
|
作者
V. Apinyan
T. K. Kopeć
机构
[1] Polish Academy of Sciences,Institute for Low Temperature and Structure Research
来源
关键词
Excitons; Phase transition; Strongly correlated systems; Coulomb interaction;
D O I
暂无
中图分类号
学科分类号
摘要
We study the excitonic phase transition in a system of the conduction band electrons and valence band holes described by the three-dimensional (3D) extended Falicov–Kimball (EFKM) model with the tunable Coulomb interaction U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U$$\end{document} between both species. By lowering the temperature, the electron–hole system may become unstable with respect to the formation of the excitons, i.e, electron–hole pairs at temperature T=TΔ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T=T_{\Delta }$$\end{document}, exhibiting a gap Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} in the particle excitation spectrum. To this end we implement the functional integral formulation of the EFKM, where the Coulomb interaction term is expressed in terms of U(1) phase variables conjugate to the local particle number, providing a useful representation of strongly correlated system. The effective action formalism allows us to formulate a problem in the phase-only action in the form of the quantum rotor model and to obtain analytical formulas for the critical lines and other quantities of physical interest like charge gap, chemical potential and the correlation length.
引用
收藏
页码:27 / 63
页数:36
相关论文
共 50 条
  • [31] Phase Separation in the Neutral Falicov–Kimball Model
    Tom Kennedy
    Journal of Statistical Physics, 1998, 91 : 829 - 843
  • [32] Mass Imbalance Effects in the Excitonic Condensation of the Extended Falicov-Kimball Model (vol 258, 2000564, 2021)
    Ninh, Quoc-Huy
    Phan, Van-Nham
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2022, 259 (02):
  • [33] Competing orders in an extended Falicov-Kimball model
    Pradhan, Subhasree
    EUROPEAN PHYSICAL JOURNAL B, 2019, 92 (10):
  • [34] Ground states of an extended Falicov-Kimball model
    Brydon, P. M. R.
    Gulacsi, M.
    Bussmann-Holder, A.
    EUROPEAN PHYSICAL JOURNAL B, 2006, 54 (01): : 73 - 81
  • [35] Variational cluster approach to the extended Falicov-Kimball model: A BCS-BEC crossover in the Excitonic insulators
    Seki, K.
    Kaneko, T.
    Yamaki, S.
    Eder, R.
    Ohta, Y.
    INTERNATIONAL CONFERENCE ON STRONGLY CORRELATED ELECTRON SYSTEMS (SCES 2011), 2012, 391
  • [36] On quantum phase transition. II. The Falicov-Kimball model
    Messager, A
    JOURNAL OF STATISTICAL PHYSICS, 2002, 106 (3-4) : 785 - 810
  • [37] Order, Criticality, and Excitations in the Extended Falicov-Kimball Model
    Ejima, S.
    Kaneko, T.
    Ohta, Y.
    Fehske, H.
    PHYSICAL REVIEW LETTERS, 2014, 112 (02)
  • [38] Electronically driven ferroelectricity in the extended Falicov-Kimball model
    Bonca, J
    Batista, CD
    Gubernatis, JE
    Lin, HQ
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2005, 19 (1-3): : 525 - 527
  • [39] Formation and condensation of excitonic bound states in the generalized Falicov-Kimball model
    Farkasovsky, Pavol
    PHYSICAL REVIEW B, 2017, 95 (04)