Interior regularity criterion for incompressible Ericksen-Leslie system

被引:0
|
作者
Wenya Ma
Jiqiang Feng
机构
[1] Henan Agricultural University,College of Information and Management Science
[2] Shenzhen University,College of Mathematics and Statistics
来源
关键词
interior regularity; suitable weak solution; liquid crystal; 35Q35; 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
An interior regularity criterion of suitable weak solutions is formulated for the Ericksen-Leslie system of liquid crystals. Such a criterion is point-wise, with respect to some appropriate norm of velocity u and the gradient of d, and it can be viewed as a sort of simply sufficient condition on the local regularity of suitable weak solutions.
引用
收藏
相关论文
共 50 条
  • [21] A FUNDAMENTAL IMPROVEMENT TO ERICKSEN-LESLIE KINEMATICS
    Pourmatin, Hossein
    Acharya, Amit
    Dayal, Kaushik
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 2015, 73 (03) : 435 - 466
  • [22] On regularity for an Ericksen-Leslie's parabolic-hyperbolic liquid crystals model
    Lu, Shengqi
    Chen, Miaochao
    Liu, Qilin
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2018, 98 (09): : 1574 - 1584
  • [23] CONVERGENCE OF THE GINZBURG-LANDAU APPROXIMATION FOR THE ERICKSEN-LESLIE SYSTEM
    Feng, Zhewen
    Hong, Min-Chun
    Mei, Yu
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (01) : 481 - 523
  • [24] On optimal boundary control of Ericksen-Leslie system in dimension two
    Liu, Qiao
    Wang, Changyou
    Zhang, Xiaotao
    Zhou, Jianfeng
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (01)
  • [25] Convergence of the ginzburg-landau approximation for the ericksen-leslie system
    Feng, Zhewen
    Hong, Min-Chun
    Mei, Yu
    [J]. SIAM Journal on Mathematical Analysis, 2020, 52 (01): : 481 - 523
  • [26] Uniform regularity for an Ericksen-Leslie's parabolic-hyperbolic liquid crystals model
    Fan, Jishan
    Nakamura, Gen
    Tang, Tong
    [J]. APPLIED MATHEMATICS LETTERS, 2024, 154
  • [27] ON WELL-POSEDNESS OF ERICKSEN-LESLIE'S HYPERBOLIC INCOMPRESSIBLE LIQUID CRYSTAL MODEL
    Jiang, Ning
    Luo, Yi-Long
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (01) : 403 - 434
  • [28] Large Ericksen number limit for the 2D general Ericksen-Leslie system
    Cheng, Feng
    Jiang, Ning
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 65
  • [30] Blow-up criteria of the simplified Ericksen-Leslie system
    Chen, Zhengmao
    Wu, Fan
    [J]. BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)