Automatic differentiation of explicit Runge-Kutta methods for optimal control

被引:0
|
作者
Andrea Walther
机构
[1] Technische Universität Dresden,Institute of Scientific Computing
关键词
Optimal control; Automatic differentiation; Sensitivity equation; Adjoint equation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper considers the numerical solution of optimal control problems based on ODEs. We assume that an explicit Runge-Kutta method is applied to integrate the state equation in the context of a recursive discretization approach. To compute the gradient of the cost function, one may employ Automatic Differentiation (AD). This paper presents the integration schemes that are automatically generated when differentiating the discretization of the state equation using AD. We show that they can be seen as discretization methods for the sensitivity and adjoint differential equation of the underlying control problem. Furthermore, we prove that the convergence rate of the scheme automatically derived for the sensitivity equation coincides with the convergence rate of the integration scheme for the state equation. Under mild additional assumptions on the coefficients of the integration scheme for the state equation, we show a similar result for the scheme automatically derived for the adjoint equation. Numerical results illustrate the presented theoretical results.
引用
收藏
页码:83 / 108
页数:25
相关论文
共 50 条
  • [31] Explicit mixed finite order Runge-Kutta methods
    Chen, B
    Solis, F
    APPLIED NUMERICAL MATHEMATICS, 2003, 44 (1-2) : 21 - 30
  • [32] STABILITY OF SEMI-EXPLICIT RUNGE-KUTTA METHODS
    SCHERER, R
    ARCHIV DER MATHEMATIK, 1975, 26 (03) : 267 - 272
  • [33] Exponentially-fitted explicit Runge-Kutta methods
    Vanden Berghe, G
    De Meyer, H
    Van Daele, M
    Van Hecke, T
    COMPUTER PHYSICS COMMUNICATIONS, 1999, 123 (1-3) : 7 - 15
  • [34] INTERNAL ERROR PROPAGATION IN EXPLICIT RUNGE-KUTTA METHODS
    Ketcheson, David I.
    Loczi, Lajos
    Parsani, Matteo
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) : 2227 - 2249
  • [35] Explicit two-step Runge-Kutta methods
    Skvortsov L.M.
    Mathematical Models and Computer Simulations, 2010, 2 (2) : 222 - 231
  • [36] BLOCK EMBEDDED EXPLICIT RUNGE-KUTTA METHODS.
    Cash, J.R.
    Computers & mathematics with applications, 1985, 11 (04): : 395 - 409
  • [37] NOTE ON EXPLICIT PARALLEL MULTISTEP RUNGE-KUTTA METHODS
    VANDERHOUWEN, PJ
    SOMMEIJER, BP
    VANMOURIK, PA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1989, 27 (03) : 411 - 420
  • [38] On explicit two-derivative Runge-Kutta methods
    Chan, Robert P. K.
    Tsai, Angela Y. J.
    NUMERICAL ALGORITHMS, 2010, 53 (2-3) : 171 - 194
  • [39] Validated computation of the local truncation error of Runge-Kutta methods with automatic differentiation
    Mullier, Olivier
    Chapoutot, Alexandre
    Sandretto, Julien Alexandre Dit
    OPTIMIZATION METHODS & SOFTWARE, 2018, 33 (4-6): : 718 - 728
  • [40] Positivity of Runge-Kutta and diagonally split Runge-Kutta methods
    Horvath, Z
    APPLIED NUMERICAL MATHEMATICS, 1998, 28 (2-4) : 309 - 326