Gevrey Properties and Summability of Formal Power Series Solutions of Some Inhomogeneous Linear Cauchy-Goursat Problems

被引:0
|
作者
Pascal Remy
机构
[1] Université de Versailles Saint-Quentin,Laboratoire de Mathématiques de Versailles
关键词
Linear partial differential equation; Linear integro-differential equation; Divergent power series; Newton polygon; Gevrey order; Gevrey asymptotic; Summability; 35C10; 35C20; 40B05;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we investigate the Gevrey and summability properties of the formal power series solutions of some inhomogeneous linear Cauchy-Goursat problems with analytic coefficients in a neighborhood of (0,0)∈ℂ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(0,0)\in \mathbb {C}^{2}$\end{document}. In particular, we give necessary and sufficient conditions under which these solutions are convergent or are k-summable, for a convenient positive rational number k, in a given direction.
引用
收藏
页码:69 / 108
页数:39
相关论文
共 43 条