Symmetry and monotonicity of nonnegative solutions to pseudo-relativistic Choquard equations

被引:0
|
作者
Yuxia Guo
Shaolong Peng
机构
[1] Tsinghua University,Department of Mathematics
关键词
Pseudo-relativistic Choquard equations; Narrow region principle; Generalized direct method of moving planes; Primary: 35B45; Secondary: 35J40; 35J91;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the following pseudo-relativistic Choquard equations: (-Δ+m2)su+wu=RN,t1|x-y|N-2t∗upuq,inRN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (-\Delta +m^{2})^{s} u+wu=R_{N,t}\left( \frac{1}{|x-y|^{N-2t}}*u^{p}\right) u^{q}, \quad \mathrm{in} \;\;\mathbb {R}^{N}, \end{aligned}$$\end{document}where s,t∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s,t\in (0,1)$$\end{document}, mass m>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m>0$$\end{document}, w>-m2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w>-m^{2s}$$\end{document}, 2<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<p<\infty $$\end{document}, and 0<q≤p-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<q\le p-1$$\end{document}. We first establish a narrow region principle for pseudo-relativistic Choquard equations and estimate the decay of the solutions at infinity. Using the generalized direct method of moving planes, we obtain the radial symmetry and monotonicity of nonnegative solutions for the above equations.
引用
收藏
相关论文
共 50 条