Simultaneous variable selection for heteroscedastic regression models

被引:0
|
作者
ZhongZhan Zhang
DaRong Wang
机构
[1] Beijing University of Technology,College of Applied Sciences
[2] Beijing University of Technology,The Pilot College
来源
Science China Mathematics | 2011年 / 54卷
关键词
variable selection; heteroscedastic regression models; adjusted profile log-likelihood; AIC; BIC; 62F07; 62J05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a new criterion, named PICa, to simultaneously select explanatory variables in the mean model and variance model in heteroscedastic linear models based on the model structure. We show that the new criterion can select the true mean model and a correct variance model with probability tending to 1 under mild conditions. Simulation studies and a real example are presented to evaluate the new criterion, and it turns out that the proposed approach performs well.
引用
收藏
页码:515 / 530
页数:15
相关论文
共 50 条
  • [21] Simultaneous variable selection and parametric estimation for quantile regression
    Xiong, Wei
    Tian, Maozai
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2015, 44 (01) : 134 - 149
  • [22] Robust estimation and variable selection in heteroscedastic regression model using least favorable distribution
    Yeşim Güney
    Yetkin Tuaç
    Şenay Özdemir
    Olcay Arslan
    [J]. Computational Statistics, 2021, 36 : 805 - 827
  • [23] Variable selection in functional regression models: A review
    Aneiros, German
    Novo, Silvia
    Vieu, Philippe
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 188
  • [24] Variable selection in Functional Additive Regression Models
    Febrero-Bande, Manuel
    Gonzalez-Manteiga, Wenceslao
    Oviedo de la Fuente, Manuel
    [J]. FUNCTIONAL STATISTICS AND RELATED FIELDS, 2017, : 113 - 122
  • [25] Consistent variable selection for functional regression models
    Collazos, Julian A. A.
    Dias, Ronaldo
    Zambom, Adriano Z.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 146 : 63 - 71
  • [26] Variable selection in finite mixture of regression models
    Khalili, Abbas
    Chen, Jiahua
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (479) : 1025 - 1038
  • [27] Variable Selection for Semiparametric Isotonic Regression Models
    Du, Jiang
    Zhang, Zhongzhan
    Xie, Tianfa
    [J]. NONLINEAR MATHEMATICS FOR UNCERTAINTY AND ITS APPLICATIONS, 2011, 100 : 525 - 532
  • [28] VARIABLE SELECTION FOR REGRESSION MODELS WITH MISSING DATA
    Garcia, Ramon I.
    Ibrahim, Joseph G.
    Zhu, Hongtu
    [J]. STATISTICA SINICA, 2010, 20 (01) : 149 - 165
  • [29] Variable selection in functional additive regression models
    Manuel Febrero-Bande
    Wenceslao González-Manteiga
    Manuel Oviedo de la Fuente
    [J]. Computational Statistics, 2019, 34 : 469 - 487
  • [30] Variable selection and transformation in linear regression models
    Yeo, IK
    [J]. STATISTICS & PROBABILITY LETTERS, 2005, 72 (03) : 219 - 226