The origin of the Tongkeng-Changpo tin deposit, Dachang metal district, Guangxi, China: clues from fluid inclusions and He isotope systematics

被引:0
|
作者
Cai Minghai
Mao Jingwen
Liang Ting
Franco Pirajno
Huang Huilan
机构
[1] Guangxi University,Faculty of Resource and Environment
[2] Chinese Academy of Geological Sciences,Institute of Mineral Resources
[3] Chang’an University,Department of Geology and Mineral Resources
[4] Geological Survey of Western Australia,Yichang Institute of Geology and Mineral Resources
[5] China Geological Survey,undefined
来源
Mineralium Deposita | 2007年 / 42卷
关键词
Tin; Mineralization fluid; Inclusions; He; Isotopes; Tongkeng-Changpo; Polymetallic tin; Dachang; Guangxi; China;
D O I
暂无
中图分类号
学科分类号
摘要
Tongkeng-Changpo is the largest tin deposit within the giant Dachang polymetallic tin ore field in Guangxi, southern China, which is part of a large skarn system associated with Cretaceous granitoids. The Tongkeng-Changpo mineralization consists of veins and stockworks in the upper levels and replacement stratiform orebodies (mantos) at lower levels. Based on textural relationships, three major mineralizing stages can be recognized: stage I with cassiterite, sulphides, stannite, tourmaline, and quartz; stage II with cassiterite, sulphides, sulphosalts, quartz, and calcite; and stage III with calcite as the main phase. The study of fluid inclusions has shown that there are two main fluid types: CO2 and NaCl-H2O. Homogenization temperatures are 270 to 365°C, 210 to 240°C, and 140 to 190°C for stages I, II, and III, respectively. Salinities range from 1 to 7 wt.% NaCl equiv. in the early ore stage and 3 to 10 wt.% NaCl equiv. in the late stages. Laser Raman Spectroscopy indicates that the inclusion fluids in stages I and II were of carbono-aqueous composition, with minor amounts of CH4 and H2S, whereas those in stage III were aqueous. Helium isotopic analyses of inclusion fluids indicate that the 3He/4He ratios in the ore veins are in between 1.2 to 2.9 Ra (Ra = 1.4 × 10−6, modern atmospheric ratio), and range from 1.6 to 2.5 Ra in the stratiform orebodies. This range of 3He/4He ratios is significantly higher than that of crustal fluids (0.01–0.05 Ra). The similar characteristics of fluid inclusions and their He isotopic composition, as well as age constraints, indicate that the ore veins and stratiform orebodies of the Tongkeng-Changpo deposit formed from the same hydrothermal system, likely related to granite intrusions of the Mesozoic Yanshanian tectono-thermal event. In addition, the high R/Ra ratios indicate a mantle contribution in the ore fluids.
引用
收藏
页码:613 / 626
页数:13
相关论文
共 33 条
  • [21] Origin of the intrusion-related Lang Vai gold-antimony district (Northeastern Vietnam): Constraints from fluid inclusions study and C-O-S-Pb isotope systematics
    Nevolko, Peter A.
    Pham Thi Dung
    Fominykh, Pavel A.
    Tran Trong Hoa
    Tran Tuan Anh
    Ngo Thi Phuong
    ORE GEOLOGY REVIEWS, 2019, 104 : 114 - 131
  • [22] Genesis of the Erdaohe skarn Pb-Zn-Ag deposit in the Great Hinggan Range, NE China: Evidence from geology, fluid inclusions, and H-O-S isotope systematics
    Guo, Xiang-Guo
    Gao, Jian-Jing
    Zhang, De-Hui
    Li, Jin-Wen
    Xiang, An-Ping
    Li, Chang-Jian
    Wang, Si-Yao
    Jiao, Tian-Long
    Ren, Cheng-Hao
    ORE GEOLOGY REVIEWS, 2022, 140
  • [23] Origin and evolution of hydrothermal fluids in the Taochong iron deposit, Middle-Lower Yangtze Valley, Eastern China: Evidence from microthermometric and stable isotope analyses of fluid inclusions
    Cao, Yi
    Du, Yangsong
    Gao, Fuping
    Hu, Lifang
    Xin, Fengpei
    Pang, Zhenshan
    ORE GEOLOGY REVIEWS, 2012, 48 : 225 - 238
  • [24] Genesis of the Angeer Yinwula Pb–Zn deposit, Inner Mongolia, China: constraints from fluid inclusions, C–H–O–S–Pb isotope systematics, and zircon U–Pb geochronology
    Han-Lun Liu
    Yi Han
    Ke-Yong Wang
    Wen Li
    Jian Li
    Wen-Yan Cai
    Li-Juan Fu
    Arabian Journal of Geosciences, 2018, 11
  • [25] Genesis of the Hardat Tolgoi Ag-Pb-Zn deposit, Inner Mongolia, northeast China: Constraints from geology, fluid inclusions, and C-O-S-Pb isotope systematics
    Wang, Kang
    Wang, Yin-Hong
    Zhang, Fang-Fang
    Yao, Yuan
    ORE GEOLOGY REVIEWS, 2020, 122
  • [26] Genesis of the Tianbaoshan Pb-Zn-Cu-Mo polymetallic deposit in eastern Jilin, NE China: Constraints from fluid inclusions and C-H-O-S-Pb isotope systematics
    Wang, Zhi-gao
    Wang, Ke-yong
    Wan, Duo
    Konare, Yassa
    Wang, Cheng-Yang
    ORE GEOLOGY REVIEWS, 2017, 80 : 1111 - 1134
  • [27] Genesis of the Huanggoushan Pb-Zn-Au polymetallic deposit in southern Jilin Province, NE China: Constraints from fluid inclusions and C-H-O-S-Pb isotope systematics
    Wang, Zhi-Gao
    Wang, Ke-Yong
    Wan, Duo
    Konare, Yassa
    Liang, Yi-Hong
    GEOLOGICAL JOURNAL, 2020, 55 (04) : 3112 - 3138
  • [28] Genesis and fluid evolution of the Huangtan Au-Cu deposit in the Kalatag district, Eastern Tianshan, NW China: Constraints from geology, geochronology, fluid inclusions, and H-O-S-Pb isotope geochemistry
    Sun, Bingke
    Ruan, Banxiao
    Lv, Xinbiao
    Dai, Zhihui
    Mao, Chen
    ORE GEOLOGY REVIEWS, 2021, 138
  • [29] The Middle Jurassic Sanhe Pb-Zn-Ag deposit in NE China: Constraints from geochronology, geochemistry, fluid inclusion and multi-isotope (S-Pb-He-Hf) systematics
    Liu, Jun
    He, Jun-Cheng
    Lai, Chun -Kit
    Pan, Jun-Yi
    Wang, Xiao-Tong
    ORE GEOLOGY REVIEWS, 2022, 150
  • [30] Genesis of the Xiaobeigou gold deposit in the Jiapigou gold district, Northeast China: Constraints from fluid inclusions, quartz H-O isotopes, and pyrite in situ sulfur isotope and trace element compositions
    Wutiepu, Wukeyila
    Yang, Yanchen
    Wang, Jinlin
    Chen, Yanjing
    Zhou, Kefa
    Wang, Shanshan
    Han, Shijiong
    ORE GEOLOGY REVIEWS, 2023, 159