Exact and numerical results on entanglement entropy in (5 + 1)-dimensional CFT

被引:0
|
作者
Benjamin R. Safdi
机构
[1] Princeton University,Department of Physics
关键词
Field Theories in Lower Dimensions; AdS-CFT Correspondence; Field Theories in Higher Dimensions; Renormalization Group;
D O I
暂无
中图分类号
学科分类号
摘要
We calculate the shape dependence of entanglement entropy in (5 + 1)-dimensional conformal field theory in terms of the extrinsic curvature of the entangling surface, the opening angles of possible conical singularities, and the conformal anomaly coefficients, which are required to obey a single constraint. An important special case of this result is given by the interacting (2, 0) theory describing a large number of coincident M5-branes. To derive the more general result we rely crucially on the holographic prescription for calculating entanglement entropy using Lovelock gravity. We test the conjecture by relating the entanglement entropy of the free massless (1, 0) hypermultiplet in (5 + 1)-dimensions to the entanglement entropy of the free massive chiral multiplet in (2 + 1)-dimensions, which we calculate numerically using lattice techniques. We also present a numerical calculation of the (2 + 1)-dimensional renormalized entanglement entropy for the free massive Dirac fermion, which is shown to be consistent with the F-theorem.
引用
收藏
相关论文
共 50 条
  • [31] Numerical results for the exact spectrum of planar AdS4/CFT3
    Fedor Levkovich-Maslyuk
    Journal of High Energy Physics, 2012
  • [32] Exact renormalization group, entanglement entropy, and black hole entropy
    Miqueleto, Joao Lucas
    Landulfo, Andre G. S.
    PHYSICAL REVIEW D, 2021, 103 (04)
  • [33] Entanglement entropy and boundary renormalization group flow: Exact results in the Ising universality class
    Cornfeld, Eyal
    Sela, Eran
    PHYSICAL REVIEW B, 2017, 96 (07)
  • [34] Entanglement entropy for a Maxwell field: Numerical calculation on a two-dimensional lattice
    Casini, Horacio
    Huerta, Marina
    PHYSICAL REVIEW D, 2014, 90 (10)
  • [35] Timelike entanglement entropy in dS3/CFT2
    Jiang, Xin
    Wang, Peng
    Wu, Houwen
    Yang, Haitang
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (08)
  • [36] Insights on entanglement entropy in 1+1 dimensional causal sets
    Keseman, Theo
    Muneesamy, Hans J.
    Yazdi, Yasaman K.
    CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (24)
  • [37] Entanglement entropy in T(T)over-bar-deformed CFT
    Chen, Bin
    Chen, Lin
    Hao, Peng-xiang
    PHYSICAL REVIEW D, 2018, 98 (08):
  • [38] Timelike entanglement entropy in dS3/CFT2
    Xin Jiang
    Peng Wang
    Houwen Wu
    Haitang Yang
    Journal of High Energy Physics, 2023
  • [39] Numerical estimation of the relative entropy of entanglement
    Zinchenko, Yuriy
    Friedland, Shmuel
    Gour, Gilad
    PHYSICAL REVIEW A, 2010, 82 (05):
  • [40] Numerical determination of entanglement entropy for a sphere
    Lohmayer, R.
    Neuberger, H.
    Schwimmer, A.
    Theisen, S.
    PHYSICS LETTERS B, 2010, 685 (2-3) : 222 - 227