Rayleigh Surface Waves on a Kelvin-Voigt Viscoelastic Half-Space

被引:0
|
作者
Stan Chiriţă
Michele Ciarletta
Vincenzo Tibullo
机构
[1] Al. I. Cuza University of Iaşi,Faculty of Mathematics
[2] Romanian Academy,Octav Mayer Mathematics Institute
[3] University of Salerno,undefined
来源
Journal of Elasticity | 2014年 / 115卷
关键词
Seismic Rayleigh waves; Kelvin-Voigt viscoelastic half-space; Secular equation; Damped in time wave solutions; Exponentially graded viscoelastic half-space; 74D05; 74J05; 74J15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the propagation of Rayleigh surface waves in an exponentially graded half-space made of an isotropic Kelvin-Voigt viscoelastic material. Here we take into account the effect of the viscoelastic dissipation energy upon the corresponding wave solutions. As a consequence we introduce the damped in time wave solutions and then we treat the Rayleigh surface wave problem in terms of such solutions. The explicit form of the secular equation is obtained in terms of the wave speed and the viscoelastic inhomogeneous profile. Furthermore, we use numerical methods and computations to solve the secular equation for some special homogeneous materials. The results sustain the idea, existent in literature on the argument, that there is possible to have more than one surface wave for the Rayleigh wave problem.
引用
收藏
页码:61 / 76
页数:15
相关论文
共 50 条
  • [21] Rayleigh waves in a double porosity half-space
    Dai, Zhi-Jun
    Kuang, Zhen-Bang
    Zha, She-Xu
    JOURNAL OF SOUND AND VIBRATION, 2006, 298 (1-2) : 319 - 332
  • [22] Rayleigh-Type Surface Waves in a Swelling Porous Half-Space
    Goyal, Suraj
    Singh, Dilbag
    Tomar, S. K.
    TRANSPORT IN POROUS MEDIA, 2016, 113 (01) : 91 - 109
  • [23] RAYLEIGH-WAVES IN A POROELASTIC HALF-SPACE
    TAJUDDIN, M
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1984, 75 (03): : 682 - 684
  • [24] RAYLEIGH-TYPE SURFACE-WAVE ON A LINEAR VISCOELASTIC HALF-SPACE
    BORCHERDT, RD
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1973, 54 (06): : 1651 - 1653
  • [25] Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams
    Lei, Y.
    Adhikari, S.
    Friswell, M. I.
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2013, 66-67 : 1 - 13
  • [26] RAYLEIGH WAVE-PROPAGATION IN A VISCOELASTIC HALF-SPACE
    ABOUDI, J
    JOURNAL OF ENGINEERING MATHEMATICS, 1972, 6 (04) : 313 - &
  • [27] RAYLEIGH-TYPE SURFACE-WAVE ON A LINEAR VISCOELASTIC HALF-SPACE
    BORCHERDT, RD
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1974, 55 (01): : 13 - 15
  • [28] Homogenization of a thermo-chemo-viscoelastic Kelvin-Voigt model
    Amosov, Andrey
    Kostin, Ilya
    Panasenko, Grigory
    Smyshlyaev, Valery P.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (08)
  • [29] Eigen theory of viscoelastic dynamics based on the Kelvin-Voigt model
    Guo, SH
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2004, 25 (07) : 792 - 798
  • [30] Optimal decay for coupled waves with Kelvin-Voigt damping
    Oquendo, Higidio Portillo
    Pacheco, Patricia Sanez
    APPLIED MATHEMATICS LETTERS, 2017, 67 : 16 - 20