Classification of equation of state in relativistic heavy-ion collisions using deep learning

被引:0
|
作者
Yu. Kvasiuk
E. Zabrodin
L. Bravina
I. Didur
M. Frolov
机构
[1] University of Oslo,Department of Physics
[2] Taras Shevchenko National University of Kyiv,Faculty of Physics
[3] Moscow State University,Skobeltsyn Institute of Nuclear Physics
[4] Vorob’evy Gory,undefined
[5] DataRoot Labs,undefined
关键词
Heavy Ion Phenomenology; Phenomenological Models;
D O I
暂无
中图分类号
学科分类号
摘要
Convolutional Neural Nets, which is a powerful method of Deep Learning, is applied to classify equation of state of heavy-ion collision event generated within the UrQMD model. Event-by-event transverse momentum and azimuthal angle distributions of protons are used to train a classifier. An overall accuracy of classification of 98% is reached for Au+Au events at sNN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s_{NN}} $$\end{document} = 11 GeV. Performance of classifiers, trained on events at different colliding energies, is investigated. Obtained results indicate extensive possibilities of application of Deep Learning methods to other problems in physics of heavy- ion collisions.
引用
收藏
相关论文
共 50 条
  • [21] RELATIVISTIC HEAVY-ION CENTRAL COLLISIONS
    SANDOVAL, A
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (01): : 88 - 88
  • [22] ANOMALONS IN RELATIVISTIC HEAVY-ION COLLISIONS
    BAYMAN, BF
    TANG, YC
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 147 (03): : 155 - 187
  • [23] DYNAMICS OF RELATIVISTIC HEAVY-ION COLLISIONS
    TONEEV, VD
    AMELIN, NS
    GUDIMA, KK
    SIVOKLOKOV, SY
    NUCLEAR PHYSICS A, 1990, 519 (1-2) : C463 - C478
  • [24] STRANGENESS IN RELATIVISTIC HEAVY-ION COLLISIONS
    KOCH, P
    MULLER, B
    RAFELSKI, J
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1986, 142 (04): : 167 - 262
  • [25] Physics with relativistic heavy-ion collisions
    Doenigus, Benjamin
    18TH INTERNATIONAL SYMPOSIUM ON VERY HIGH ENERGY COSMIC RAY INTERACTIONS (ISVHECRI 2014), 2015, 99
  • [26] Relativistic hydrodynamics for heavy-ion collisions
    Ollitrault, Jean-Yves
    EUROPEAN JOURNAL OF PHYSICS, 2008, 29 (02) : 275 - 302
  • [27] WHAT ARE WE LEARNING FROM RELATIVISTIC HEAVY-ION COLLISIONS
    NIX, JR
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1980, 179 (MAR): : 51 - NUCL
  • [28] Aspects of Relativistic Heavy-Ion Collisions
    Wolschin, Georg
    UNIVERSE, 2020, 6 (05)
  • [29] RELATIVISTIC HEAVY-ION ATOM COLLISIONS
    ANHOLT, R
    GOULD, H
    ADVANCES IN ATOMIC AND MOLECULAR PHYSICS, 1986, 22 : 315 - 385
  • [30] Jet Tomography in Heavy-Ion Collisions with Deep Learning
    Du, Yi-Lun
    Pablos, Daniel
    Tywoniuk, Konrad
    PHYSICAL REVIEW LETTERS, 2022, 128 (01)