On lineability of families of non-measurable functions of two variable

被引:0
|
作者
Tomasz Natkaniec
机构
[1] University of Gdańsk,Institute of Mathematics
关键词
Lineability; Function of two variables; Sup-measurable function; Non-measurable function; Sierpiński set; Separately measurable function; 28A20; 28A05; 15A03; 03E50; 03E65;
D O I
暂无
中图分类号
学科分类号
摘要
A function F:R2→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F:\mathbb {R}^2\rightarrow \mathbb {R}$$\end{document} is sup-measurable if, for each (Lebesgue) measurable function f:R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\mathbb {R}\rightarrow \mathbb {R}$$\end{document}, the Carathéodory superposition Ff:R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_f:\mathbb {R}\rightarrow \mathbb {R}$$\end{document} given by Ff:x↦F(x,f(x))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_f: x\mapsto F(x,f(x))$$\end{document} is measurable. The existence of non-measurable sup-measurable functions is independent of ZFC. We prove, assuming CH, that the family of all non-measurable sup-measurable functions F:R2→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F:\mathbb {R}^2\rightarrow \mathbb {R}$$\end{document} (plus the zero function) contains a linear vector space of dimension 2c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^\mathfrak {c}$$\end{document}. A function F:R2→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F:\mathbb {R}^2\rightarrow \mathbb {R}$$\end{document} is separately measurable if all its vertical and horizontal sections are measurable. In the second part of this note we show that the family of non-measurable separately measurable functions is 2c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^\mathfrak {c}$$\end{document}-lineable.
引用
收藏
相关论文
共 50 条
  • [31] A note on rough set and non-measurable set
    Yu, J
    Cheng, QS
    CHINESE SCIENCE BULLETIN, 2000, 45 (16): : 1456 - 1458
  • [32] A NEW NON-MEASURABLE SET AS A VECTOR SPACE
    Chung, Soon-Yeong
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2006, 21 (03): : 429 - 432
  • [33] An observation methodology for non-measurable rotorcraft states
    Salucci, Francesco
    Parravicini, Paolo
    Riboldi, Carlo E. D.
    Trainelli, Lorenzo
    AEROSPACE SCIENCE AND TECHNOLOGY, 2023, 141
  • [34] Concerning Van Vlecks non-measurable set
    Lennes, N. J.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1913, 14 (1-4) : 109 - 112
  • [35] Lineability Issues Involving Vector-Valued Measurable and Integrable Functions
    Garcia-Pacheco, F. J.
    Sofi, M. A.
    JOURNAL OF CONVEX ANALYSIS, 2012, 19 (02) : 393 - 402
  • [36] Theoretical Count of Function Points for Non-Measurable Items
    Serpa, Nilo
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY PROJECT MANAGEMENT, 2013, 4 (01) : 41 - 57
  • [37] A scaling equation with only non-measurable orthogonal solutions
    Cnops, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (07) : 1975 - 1979
  • [38] MEASURE-THEORETIC PROPERTIES OF NON-MEASURABLE SETS
    SHIFFMAN, M
    PACIFIC JOURNAL OF MATHEMATICS, 1989, 138 (02) : 357 - 389
  • [39] Identification of non-measurable parameters of ferroelectrics by optimization method
    Kukushkin, SA
    Osipov, AV
    Guzenko, PY
    Spirin, VV
    2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 937 - 941
  • [40] Non-measurable sets in the Levi-Civita field
    Moreno, Hector M.
    ADVANCES IN ULTRAMETRIC ANALYSIS, 2013, 596 : 163 - 177