Lineability;
Function of two variables;
Sup-measurable function;
Non-measurable function;
Sierpiński set;
Separately measurable function;
28A20;
28A05;
15A03;
03E50;
03E65;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
A function F:R2→R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F:\mathbb {R}^2\rightarrow \mathbb {R}$$\end{document} is sup-measurable if, for each (Lebesgue) measurable function f:R→R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f:\mathbb {R}\rightarrow \mathbb {R}$$\end{document}, the Carathéodory superposition Ff:R→R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_f:\mathbb {R}\rightarrow \mathbb {R}$$\end{document} given by Ff:x↦F(x,f(x))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_f: x\mapsto F(x,f(x))$$\end{document} is measurable. The existence of non-measurable sup-measurable functions is independent of ZFC. We prove, assuming CH, that the family of all non-measurable sup-measurable functions F:R2→R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F:\mathbb {R}^2\rightarrow \mathbb {R}$$\end{document} (plus the zero function) contains a linear vector space of dimension 2c\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2^\mathfrak {c}$$\end{document}. A function F:R2→R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F:\mathbb {R}^2\rightarrow \mathbb {R}$$\end{document} is separately measurable if all its vertical and horizontal sections are measurable. In the second part of this note we show that the family of non-measurable separately measurable functions is 2c\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2^\mathfrak {c}$$\end{document}-lineable.