On lineability of families of non-measurable functions of two variable

被引:0
|
作者
Tomasz Natkaniec
机构
[1] University of Gdańsk,Institute of Mathematics
关键词
Lineability; Function of two variables; Sup-measurable function; Non-measurable function; Sierpiński set; Separately measurable function; 28A20; 28A05; 15A03; 03E50; 03E65;
D O I
暂无
中图分类号
学科分类号
摘要
A function F:R2→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F:\mathbb {R}^2\rightarrow \mathbb {R}$$\end{document} is sup-measurable if, for each (Lebesgue) measurable function f:R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\mathbb {R}\rightarrow \mathbb {R}$$\end{document}, the Carathéodory superposition Ff:R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_f:\mathbb {R}\rightarrow \mathbb {R}$$\end{document} given by Ff:x↦F(x,f(x))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_f: x\mapsto F(x,f(x))$$\end{document} is measurable. The existence of non-measurable sup-measurable functions is independent of ZFC. We prove, assuming CH, that the family of all non-measurable sup-measurable functions F:R2→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F:\mathbb {R}^2\rightarrow \mathbb {R}$$\end{document} (plus the zero function) contains a linear vector space of dimension 2c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^\mathfrak {c}$$\end{document}. A function F:R2→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F:\mathbb {R}^2\rightarrow \mathbb {R}$$\end{document} is separately measurable if all its vertical and horizontal sections are measurable. In the second part of this note we show that the family of non-measurable separately measurable functions is 2c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^\mathfrak {c}$$\end{document}-lineable.
引用
收藏
相关论文
共 50 条