Localization on certain Grothendieck categories

被引:0
|
作者
F. Castaño-Iglesias
N. Chifan
C. Năstăsescu
机构
[1] Universidad de Almería,Departamento de Estadística y Matemática Aplicada
[2] University of Galati,Department of Mathematics
[3] Facultatea de Matematică,undefined
来源
Acta Mathematica Sinica, English Series | 2009年 / 25卷
关键词
Grothendieck category; localization; colocalization; semiartinian category; semiperfect category; 18E15; 18E35;
D O I
暂无
中图分类号
学科分类号
摘要
Using categorical techniques we obtain some results on localization and colocalization theory in Grothendieck categories with a set of small projective generators. In particular, we give a sufficient condition for such category to be semiartinian. For semiartinian Grothendieck categories where every simple object has a projective cover, we obtain that every localizing subcategory is a TTF-class. In addition, some applications to semiperfect categories are obtained.
引用
收藏
页码:379 / 392
页数:13
相关论文
共 50 条
  • [21] Grothendieck categories of enriched functors
    Al Hwaeer, Hassan
    Garkusha, Grigory
    JOURNAL OF ALGEBRA, 2016, 450 : 204 - 241
  • [22] Grothendieck groups in extriangulated categories
    Zhu, Bin
    Zhuang, Xiao
    JOURNAL OF ALGEBRA, 2021, 574 : 206 - 232
  • [23] Grothendieck groups for categories of complexes
    Foxby, Hans-Bjorn
    Halvorsen, Esben Bistrup
    JOURNAL OF K-THEORY, 2009, 3 (01) : 165 - 203
  • [24] Grothendieck ring of pretriangulated categories
    Bondal, AI
    Larsen, M
    Lunts, VA
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (29) : 1461 - 1495
  • [25] On a natural duality between Grothendieck categories
    Castano-Iglesias, F.
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (06) : 2079 - 2091
  • [26] A Note on Regular Objects in Grothendieck Categories
    S. Dăscălescu
    C. Năstăsescu
    A. Tudorache
    Arabian Journal for Science and Engineering, 2011, 36 : 957 - 962
  • [27] Resolution of unbounded complexes in Grothendieck categories
    Serpé, C
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 177 (01) : 103 - 112
  • [28] The Exchange Property in Grothendieck Categories: Applications
    Daus, L.
    Nastasescu, C.
    Salim, M.
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (04) : 1433 - 1442
  • [29] On the Grothendieck rings of equivariant fusion categories
    Burciu, Sebastian
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (07)
  • [30] DIRECT SUM DECOMPOSITIONS IN GROTHENDIECK CATEGORIES
    STENSTROM, B
    ARKIV FOR MATEMATIK, 1968, 7 (05): : 427 - +