Sojourns of fractional Brownian motion queues: transient asymptotics

被引:0
|
作者
Krzysztof Dȩbicki
Enkelejd Hashorva
Peng Liu
机构
[1] University of Wrocław,Mathematical Institute
[2] University of Lausanne,Department of Actuarial Science
[3] UNIL-Dorigny,School of Mathematics, Statistics and Actuarial Science
[4] University of Essex,undefined
来源
Queueing Systems | 2023年 / 105卷
关键词
Sojourn time; Fractional Brownian motion; Stationary queueing process; Exact asymptotics; Generalized Berman-type constants; Primary 60G15; Secondary 60G70;
D O I
暂无
中图分类号
学科分类号
摘要
We study the asymptotics of sojourn time of the stationary queueing process Q(t),t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q(t),t\ge 0$$\end{document} fed by a fractional Brownian motion with Hurst parameter H∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\in (0,1)$$\end{document} above a high threshold u. For the Brownian motion case H=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=1/2$$\end{document}, we derive the exact asymptotics of P∫T1T2I(Q(t)>u+h(u))dt>x|Q(0)>u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathbb {P}} \left\{ \int _{T_1}^{T_2}{\mathbb {I}}(Q(t)>u+h(u))d t>x \Big |Q(0) >u \right\} \end{aligned}$$\end{document}as u→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\rightarrow \infty $$\end{document}, where T1,T2,x≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_1,T_2, x\ge 0$$\end{document} and T2-T1>x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_2-T_1>x$$\end{document}, whereas for all H∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\in (0,1)$$\end{document}, we obtain sharp asymptotic approximations of P1v(u)∫[T2(u),T3(u)]I(Q(t)>u+h(u))dt>y|1v(u)∫[0,T1(u)]I(Q(t)>u)dt>x,x,y>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}{} & {} {\mathbb {P}} \left\{ \frac{1}{v(u)} \int _{[T_2(u),T_3(u)]}{\mathbb {I}}(Q(t)\!>\!u\!+\!h(u))dt\!>\!y \Bigl |\frac{1}{v(u)} \int _{[0,T_1(u)]}{\mathbb {I}}(Q(t)\!>\!u)dt\!>\!x \right\} ,\\{} & {} \quad x,y >0 \end{aligned}$$\end{document}as u→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\rightarrow \infty $$\end{document}, for appropriately chosen Ti\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_i$$\end{document}’s and v. Two regimes of the ratio between u and h(u), that lead to qualitatively different approximations, are considered.
引用
收藏
页码:139 / 170
页数:31
相关论文
共 50 条
  • [21] Oscillatory Fractional Brownian Motion
    T. Bojdecki
    L. G. Gorostiza
    A. Talarczyk
    Acta Applicandae Mathematicae, 2013, 127 : 193 - 215
  • [22] Deconvolution of fractional Brownian motion
    Pipiras, V
    Taqqu, MS
    JOURNAL OF TIME SERIES ANALYSIS, 2002, 23 (04) : 487 - 501
  • [23] On the prediction of fractional Brownian motion
    Gripenberg, G
    Norros, I
    JOURNAL OF APPLIED PROBABILITY, 1996, 33 (02) : 400 - 410
  • [24] On simulating fractional Brownian motion
    Szulga, J
    Molz, F
    HIGH DIMENSIONAL PROBABILITY II, 2000, 47 : 377 - 387
  • [25] Approximations of fractional Brownian motion
    Li, Yuqiang
    Dai, Hongshuai
    BERNOULLI, 2011, 17 (04) : 1195 - 1216
  • [26] On the prediction of fractional Brownian motion
    Gripenberg, G.
    Norros, I.
    1996, (33)
  • [27] Fractal (fractional) Brownian motion
    Chow, Winston C.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2011, 3 (02): : 149 - 162
  • [28] Trading Fractional Brownian Motion
    Guasoni, Paolo
    Nika, Zsolt
    Rasonyi, Miklos
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2019, 10 (03): : 769 - 789
  • [29] The multiparameter fractional Brownian motion
    Herbin, Erick
    Merzbach, Ely
    MATH EVERYWHERE: DETERMINISTIC AND STOCHASTIC MODELLING IN BIOMEDICINE, ECONOMICS AND INDUSTRY, 2007, : 93 - +
  • [30] On Fractional Brownian Motion and Wavelets
    S. Albeverio
    P. E. T. Jorgensen
    A. M. Paolucci
    Complex Analysis and Operator Theory, 2012, 6 : 33 - 63