Strong and fragile topological Dirac semimetals with higher-order Fermi arcs

被引:0
|
作者
Benjamin J. Wieder
Zhijun Wang
Jennifer Cano
Xi Dai
Leslie M. Schoop
Barry Bradlyn
B. Andrei Bernevig
机构
[1] Princeton University,Department of Physics
[2] Chinese Academy of Sciences,Beijing National Laboratory for Condensed Matter Physics and Institute of Physics
[3] University of Chinese Academy of Sciences,Department of Physics and Astronomy
[4] Stony Brook University,Center for Computational Quantum Physics
[5] The Flatiron Institute,Physics Department
[6] Hong Kong University of Science and Technology,Department of Chemistry
[7] Princeton University,Department of Physics and Institute for Condensed Matter Theory
[8] University of Illinois at Urbana-Champaign,Dahlem Center for Complex Quantum Systems and Fachbereich Physik
[9] Donostia International Physics Center,undefined
[10] Freie Universität Berlin,undefined
[11] Max Planck Institute of Microstructure Physics,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit one-dimensional (1D) higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of an s–d-hybridized quadrupole insulator (QI). We develop a rigorous nested Jackiw–Rebbi formulation of QIs and HOFA states. Employing ab initio calculations, we demonstrate HOFAs in both the room- (α) and intermediate-temperature (α″) phases of Cd3As2, KMgBi, and rutile-structure (β′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \beta ^{\prime} $$\end{document}-) PtO2.
引用
收藏
相关论文
共 50 条
  • [41] Helical Spin Order from Topological Dirac and Weyl Semimetals
    Sun, Xiao-Qi
    Zhang, Shou-Cheng
    Wang, Zhong
    PHYSICAL REVIEW LETTERS, 2015, 115 (07)
  • [42] Higher-order topological insulators
    Schindler, Frank
    Cook, Ashley M.
    Vergniory, Maia G.
    Wang, Zhijun
    Parkin, Stuart S. P.
    Andrei Bernevig, B.
    Neupert, Titus
    SCIENCE ADVANCES, 2018, 4 (06):
  • [43] Higher-Order Dirac Sonic Crystals
    Qiu, Huahui
    Xiao, Meng
    Zhang, Fan
    Qiu, Chunyin
    PHYSICAL REVIEW LETTERS, 2021, 127 (14) : 146601
  • [44] Dirac equation perspective on higher-order topological insulators (vol 128, 221102, 2020)
    Schindler, Frank
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (04)
  • [45] A higher-order topological twist on cold-atom SO(5) Dirac fields
    Bermudez, Alejandro
    Gonzalez-Cuadra, Daniel
    Hands, Simon
    SCIPOST PHYSICS, 2024, 17 (01):
  • [46] Square-root higher-order Weyl semimetals
    Song, Lingling
    Yang, Huanhuan
    Cao, Yunshan
    Yan, Peng
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [47] Square-root higher-order Weyl semimetals
    Lingling Song
    Huanhuan Yang
    Yunshan Cao
    Peng Yan
    Nature Communications, 13
  • [48] Higher-Order Weyl-Exceptional-Ring Semimetals
    Liu, Tao
    He, James Jun
    Yang, Zhongmin
    Nori, Franco
    PHYSICAL REVIEW LETTERS, 2021, 127 (19)
  • [49] Non-Hermitian higher-order Weyl semimetals
    Ghorashi, Sayed Ali Akbar
    Li, Tianhe
    Sato, Masatoshi
    PHYSICAL REVIEW B, 2021, 104 (16)
  • [50] Type-II Dirac points and topological Fermi arcs in nonlocal metamaterials
    Li, Mingzhu
    Han, Ning
    Peng, Liang
    Zhang, Shuang
    PHYSICAL REVIEW B, 2022, 106 (23)